• 제목/요약/키워드: Steel structures

검색결과 6,196건 처리시간 0.024초

Compression test of RCFT columns with thin-walled steel tube and high strength concrete

  • Xiamuxi, Alifujiang;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.391-402
    • /
    • 2011
  • It is clear from the former researches on reinforced concrete filled steel tubular (RCFT) structures that RCFT structures have higher strength and deformation capacity than concrete filled steel tubular (CFT) structures. However, in the case of actual applications to large-scaled structures, the thin-walled steel tube must be used from the view point of economic condition. Therefore, in this study, compression tests of RCFT columns which were made by thin-walled steel tube or small load-sharing ratio in cooperation with high strength concrete were carried out, meanwhile corresponding tests of CFT, reinforced concrete (RC), pure concrete and steel tube columns were done to compare with RCFT. By the a series of comparison and analysis, characteristics of RCFT columns were clarified, and following conclusions were drawn: RCFT structures can effectively avoided from brittle failure by the using of reinforcement while CFT structures are damaged due to the brittle failure; with RCFT structures, excellent bearing capacity can be achieved in plastic zone by combining the thin-walled steel tube with high strength concrete and reinforcement. The smaller load-sharing ratio can made the reinforcement play full role; Combination of thin-walled steel tube with high strength concrete and reinforcement is effective way to construct large-scaled structures.

Fire Resistance Studies on High Strength Steel Structures

  • Wang, Wei-Yong;Xia, Yue;Li, Guo-Qiang
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.287-298
    • /
    • 2018
  • High strength steels have been widely applied in recent years due to high strength and good working performance. When subjected to fire conditions, the strength and elastic modulus of high strength steels deteriorate significantly and hence the load bearing capacity of structures reduces at elevated temperatures. The reduction factors of mechanical properties of high strength steels are quite different from mild steels. Therefore, the fire design methods deduced from mild steel structures are not applicable to high strength steel structures. In recent ten years, the first author of this paper has carried out a lot of fundamental research on fire behavior of high strength steels and structures. Summary of these research is presented in this paper, including mechanical properties of high strength steels at elevated temperature and after fire exposure, creep response of high strength steels at elevated temperature, residual stresses of welded high strength steel member after fire exposure, fire resistance of high strength steel columns, fire resistance of high strength steel beams, local buckling of high strength steel members, and residual strength of high strength steel columns after fire exposure. The results show that the mechanical properties of high strength steel in fire condition and the corresponding fire resistance of high strength steel structures are different from those of mild steel and structures, and the fire design methods recommended in current design codes are not applicable to high strength steel structures.

Interface monitoring of steel-concrete-steel sandwich structures using piezoelectric transducers

  • Yan, Jiachuan;Zhou, Wensong;Zhang, Xin;Lin, Youzhu
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1132-1141
    • /
    • 2019
  • Steel-concrete-steel (SCS) sandwich structures have important advantages over conventional concrete structures, however, bond-slip between the steel plate and concrete may lead to a loss of composite action, resulting in a reduction of stiffness and fatigue life of SCS sandwich structures. Due to the inaccessibility and invisibility of the interface, the interfacial performance monitoring and debonding detection using traditional measurement methods, such as relative displacement between the steel plate and core concrete, have proved challenging. In this work, two methods using piezoelectric transducers are proposed to detect the bond-slip between steel plate and core concrete during the test of the beam. The first one is acoustic emission (AE) method, which can detect the dynamic process of bond-slip. AE signals can be detected when initial micro cracks form and indicate the damage severity, types and locations. The second is electromechanical impedance (EMI) method, which can be used to evaluate the damage due to bond-slip through comparing with the reference data in static state, even if the bond-slip is invisible and suspends. In this work, the experiment is implemented to demonstrate the bond-slip monitoring using above methods. Experimental results and further analysis show the validity and unique advantage of the proposed methods.

편심축력(偏心軸力)을 받는 철골구조(鐵骨構造) 주각부(柱脚部)의 지압강도(支壓强度) (Bearing Strength of Steel Baseplate under Eccentric Loads)

  • 최문식;민병렬
    • 한국강구조학회 논문집
    • /
    • 제15권6호통권67호
    • /
    • pp.683-691
    • /
    • 2003
  • 최근, 철골구조, 철골 철근콘크리트 구조 및 합성구조의 주각부는 국부적으로 제한된 부분에 큰 집중하중이 작용하고, 이 하중은 베이스 플레이트를 통하여 철근콘크리트 기초에 전달하게 된다. 따라서 철골구조 및 철골 철근콘크리트 구조의 설계에서 큰 축력을 받는 주각부의 지압강도를 정확히 평가하기가 매우 어렵다. 철골주각부는 역학적 특성이 다른 재료의 접합부로 설계 및 시공상 제약을 받게 되고, 응력전달도 매우 복잡하다. 특히, 구조설계시 지압강도의 적절한 평가는 무엇보다 중요하다. 지압강도에 영향을 미치는 요소는 지압응력을 받는 부재의 형태 및 재료, 하중의 작용형태, 지압면에서의 마찰구속력, 철근보강, 건조수축 등 매우 많다. 지압강도에 대한 대부분의 실험 및 연구에서는 중심축력을 받는 주각부에 대한 연구를 수행하였다. 그러나, 실제 철골주각부 설계에서는 일축편심 또는 이축편심축력을 받는 경우가 많이 있다. 본 연구에서는 베이스플레이트에 작용하는 편심축력과 편심거리에 따른 지압강도의 변화 및 실험체의 파괴형태에 대하여 검토하였고, 편심축력 작용시 지압강도 산정방법을 제시하였다.

리브 보강 유무에 따른 강판-콘크리트 구조의 압축거동 (Compression Behavior of Steel Plate-Concrete Structures for both Stiffened and Nonstiffened structures by Rib)

  • 최병정;한홍수;한권규;이승준
    • 한국강구조학회 논문집
    • /
    • 제21권5호
    • /
    • pp.471-481
    • /
    • 2009
  • 본 연구는 SSC(Stiffened Steel Plate-Concrete) 구조와 NSC(Non-Stiffened Steel Plate-Concrete) 구조의 압축거동 특성을 비교 분석하여 SSC 구조의 구조적 성능 향상 효과를 파악하는데 그 목적이 있다. 여기서, SSC 구조는 강판에 리브(H형강)을 사용하여 선지지하고 스터드로 점지지하여 콘크리트와 일체화 시킨 구조이다. 한편 NSC 구조는 강판에 스터드로 점지지하여 콘크리트와 일체화 시킨 구조이다. 실험을 통해 다음과 같은 결과를 얻었다. SSC 구조가 NSC 구조에 비해 시험체의 강판좌굴 억제 및 급격한 콘크리트의 취성파괴를 방지하는 것으로 나타났다. 또한 SSC 구조가 NSC 구조에 비해 약 5%~28%정도 최대압축강도가 증가한 것으로 나타났다.

Vulnerability assessment of residential steel building considering soil structure interaction

  • Kailash Chaudhary;Kshitij C. Shrestha;Ojaswi Acharya
    • Earthquakes and Structures
    • /
    • 제25권2호
    • /
    • pp.79-87
    • /
    • 2023
  • Special moment resisting steel frame structures are now being used commonly in highly seismic regions as seismically reliable structures. However, a very important parameter describing the dynamics of steel structures during earthquake loading, Soil Structure Interaction (SSI), is generally neglected. In this study, the significance of consideration of flexibility of soil in being able to obtain a result closer to reality is asserted. The current paper focuses on calculation of seismic fragility curves special moment resisting steel frame structures under different earthquake loadings for fixed-base and SSI models. The observation of obtained fragility curves lead to the conclusion that the SSI has a considerable effect on component fragility for the steel structures, with its effects decreasing for higher peak ground acceleration. The results show that the structures when considered SSI have a higher probability of exceeding a damage limit state. This observation attests the role of SSI in the accurate study of structural performance.

Sensors, smart structures technology and steel structures

  • Liu, Shih-Chi
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.517-530
    • /
    • 2008
  • This paper deals with civil infrastructures in general, sensor and smart structure technology, and smart steel structures in particular. Smart structures technology, an integrated engineering field comprising sensor technology, structural control, smart materials and structural health monitoring, could dramatically transform and revolutionize the design, construction and maintenance of civil engineering structures. The central core of this technology is sensor and sensor networks that provide the essential data input in real time for condition assessment and decision making. Sensors and robust monitoring algorithms that can reliably detect the occurrence, location, and severity of damages such as crack and corrosion in steel structures will lead to increased levels of safety for civil infrastructure, and may significantly cut maintenance or repair cost through early detection. The emphasis of this paper is on sensor technology with a potential use in steel structures.

Numerical investigation on the behavior of SHS steel frames strengthened using CFRP

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • 제24권5호
    • /
    • pp.561-568
    • /
    • 2017
  • Steel frames are widely used in steel structures. Exiting steel structures may be needed to strengthen for various reasons. Carbon Fiber Reinforced Polymers (CFRP) is one of the materials that are used to strengthen steel structures. Most studies on strengthening steel structures have been done on beams and steel columns. No independent study, to the researcher's knowledge, has studied the effect of CFRP strengthening on steel frames. This study explored the use of CFRP composite on retrofitting square hollow section (SHS) steel frames, using numerical investigations. Ten Finite Element (FE) models, which were strengthened with CFRP sheets, were analyzed under different coverage length, number of layers, and location of CFRP composite. One FE model without strengthening was analyzed as a control FE model to determine the increase of the ultimate load in the strengthened steel frames. ANSYS software was used to analyze the SHS steel frames. The results showed that the coverage length and the number of layers of CFRP composite have a significant effect on increasing the ultimate load of the SHS steel frames. The results also showed that the location of CFRP composite had no similar effect on increasing the ultimate load and the amount of mid span deflection of the SHS steel frames.

Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics

  • Aydogdu, Ibrahim;Carbas, Serdar;Akin, Alper
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.93-112
    • /
    • 2017
  • Metaheuristic algorithms in general make use of uniform random numbers in their search for optimum designs. Levy Flight (LF) is a random walk consisting of a series of consecutive random steps. The use of LF instead of uniform random numbers improves the performance of metaheuristic algorithms. In this study, three discrete optimum design algorithms are developed for steel skeletal structures each of which is based on one of the recent metaheuristic algorithms. These are biogeography-based optimization (BBO), brain storm optimization (BSO), and artificial bee colony optimization (ABC) algorithms. The optimum design problem of steel skeletal structures is formulated considering LRFD-AISC code provisions and W-sections for frames members and pipe sections for truss members are selected from available section lists. The minimum weight of steel structures is taken as the objective function. The number of steel skeletal structures is designed by using the algorithms developed and effect of LF is investigated. It is noticed that use of LF results in up to 14% lighter optimum structures.

STEEL-SEAL 및 HYDRO-SEAL의 철근콘크리트 구조무에 미치는 영향에 대한 실험적 연구 (Experimental Evaluation of the Effect of Steel-Seal and Hydro-Seal in Reinforced Concrete Structures)

  • 전환석;이강균;배수호;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.287-292
    • /
    • 1997
  • Recent economic growths have accelerating much construction activities of various infrastructures, such as Express railway, Long-span bridges, Multi-story Buildings and etc. Reinforcement steel corrosion to be inevitably caused under the progress of these construction activities have been on and off serious problems in the site, which could incur another tragedic accident to us suffering from safety-ignorance disease. Thus, it is strongly requested to develop probable innovative products which could remove corrosive materials on rebars and also protect steel corrosion of reinforced concrete structures in the construction site. Hydro-Seal and Steel-Seal could solve these problems currently faced with in the construction site. The objective of this research is to experimentally evaluated the effect of Hydro-Seal and Steel-Seal in reinforced concrete structures, of which usage might affect the bond strength between steel and concrete, long-term compressive strength of concrete, corrosion resistance and etc. Related test results show that appropriate dosage of Hydro-Seal and Steel-Seal in reinforced concrete structures didnot affect physical properties of reinforced concrete structures.

  • PDF