• Title/Summary/Keyword: Steel retractable structure

Search Result 5, Processing Time 0.02 seconds

Case Analysis of Open-Close Time of Retractable Building Structure and Design Wind Speed (개폐식 건축물의 개폐 시간 및 설계 풍속 사례 분석)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.2
    • /
    • pp.79-87
    • /
    • 2017
  • The retractable roof structure is used in various fields and it is classified for steel retractable system and soft retractable system. For the domestic industry, it is in the initial phase now and the demand of the retractable roof structure is expected to increase in the future. Therefore, this paper is classified for steel retractable system and soft retractable system from the retractable roof structures in overseas to survey and analyze the cases of wind velocity on retractable roof structure in Japan that uses the same wind velocity criteria like Korea regarding the open-close time and average open-close time for retractable roof area.

A Case Study of Retraction Controlled Wind Velocity on the Steel Retractable Roof of Large Span (강성개폐식 대공간 지붕의 개폐 관리풍속 사례 분석)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.93-100
    • /
    • 2018
  • The retractable roof structures have actions of various types of loads and external forces depending on the retraction and operation conditions of the roof in terms of efficiency of control and maintenance as the aspect of structural plan. In particular, there is a need for studies on the establishment of retraction controlled wind velocity to maintain the stable control and usability of roof structure against strong winds or sudden gusts during the retraction of the roof. In this paper, it was intended to provide basic materials for the development of guidelines on the operation and maintenance of domestic retractable buildings with large space by analyzing the factors affecting the retraction controlled wind velocity for the overseas stadiums with the large spatial retractable roof structures where the sliding system was applied on the steel retractable systems. As a result, the controlled wind velocity tends to decrease as the retractable roof area increases. On the other hand, the controlled wind velocity tends to increase as the retraction time increases. In addition, in the space-grid roof structures, the spherical roof structures type showed the average controlled wind velocity of 10m/sec lower than that of 17.3m/sec for curved-roof structure type, and in the curved-roof structure type, the truss roof structure showed the average controlled wind velocity of 8.9m/sec which is lower than that of 17.3m/sec for the space for the space-grid roof structure.

Static analysis of a radially retractable hybrid grid shell in the closed position

  • Cai, Jianguo;Jiang, Chao;Deng, Xiaowei;Feng, Jian;Xu, Yixiang
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1391-1404
    • /
    • 2015
  • A radially retractable roof structure based on the concept of the hybrid grid shell is proposed in this paper. The single-layer steel trusses of the radially foldable bar structure are diagonally stiffened by cables, which leads to a single-layer lattice shell with triangular mesh. Then comparison between the static behavior between the retractable hybrid grid shell and the corresponding foldable bar shell with quadrangular mesh is discussed. Moreover, the effects of different structural parameters, such as the rise-to-span ratio, the bar cross section area and the pre-stress of the cables, on the structural behaviors are investigated. The results show that prestressed cables can strengthen the foldable bar shell with quadrangular mesh. Higher structural stiffness is anticipated by introducing cables into the hybrid system. When the rise-span ratio is equal to 0.2, where the joint displacement reaches the minimal value, the structure shape of the hyrbid grid shell approaches the reasonable arch axis. The increase of the section of steel bars contributes a lot to the integrity stiffness of the structure. Increasing cable sections would enhance the structure stiffness, but it contributes little to axial forces in structural members. And the level of cable prestress has slight influence on the joint displacements and member forces.

Nonlinear stability analysis of a radially retractable hybrid grid shell in the closed position

  • Cai, Jianguo;Zhang, Qian;Jiang, Youbao;Xu, Yixiang;Feng, Jian;Deng, Xiaowei
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.287-296
    • /
    • 2017
  • The buckling capacity of a radially retractable hybrid grid shell in the closed position was investigated in this paper. The geometrically non-linear elastic buckling and elasto-plastic buckling analyses of the hybrid structure were carried out. A parametric study was done to investigate the effects rise-to-span ratio, beam section, area and pre-stress of cables, on the failure load. Also, the influence of the shape and scale of imperfections on the elasto-plastic buckling loads was discussed. The results show that the critical buckling load is reduced by taking account of material non-linearity. Furthermore, increasing the rise-to-span ratio or the cross-section area of steel beams notably improves the stability of the structure. However, the cross section area and pre-stress of cables pose negligible effect on the structural stability. It can also be found that the hybrid structure is highly sensitive to geometric imperfection which will considerably reduce the failure load. The proper shape and scale of the imperfection are also important.

Development of a Cylindrical-Shaped Optimal Trolley Model for Cable-Based Retractable Membrane Roof (케이블 기반 개폐 막 지붕의 원통형 최적 트롤리 모델의 개발)

  • Lee, Don-Woo;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.53-62
    • /
    • 2020
  • This study examines the optimum shape of a trolley, the driving device of the retractable membrane roof. The closed-type trolley was determined as the model of the study, and a trolley composed of cylindrical-shaped inner and outer holders was selected as the basic model. Based on this model, a cylindrical-based optimal trolley model was proposed. In the basic trolley model, steel was used for the outer holder, and steel, titanium, and aluminum were used for the inner holder. In each case, the most economical shape for the external load of the basic model was newly proposed through the topology optimization process, and the finite element analysis results of the proposed model were compared to define the durability and economics. Here, topology optimization analysis and finite element analysis used the commercial software ANSYS. As a result of optimization, the volume of the outer holder of the trolley was reduced by 58.2% and the volume of the inner holder was reduced by 25.0% compared to the basic model. In the case of stress, a stress increase of 43.2 to 79.2% occurred depending on the material of the inner holder, but it was found to be significantly lower than the yield strength, thereby ensuring safety.