• 제목/요약/키워드: Steel reinforcement concrete

검색결과 1,246건 처리시간 0.023초

A constitutive model for concrete confined by steel reinforcement and carbon fiber reinforced plastic sheet

  • Li, Yeou-Fong;Fang, Tsang-Sheng
    • Structural Engineering and Mechanics
    • /
    • 제18권1호
    • /
    • pp.21-40
    • /
    • 2004
  • In this paper, we modify the L-L model (Li et al. 2003) and extend the application of this model to concrete confined by both steel reinforcement and CFRP. Thirty-six concrete cylinders with a dimension of ${\varphi}30{\times}60$ cm were tested to verify the effectiveness of the proposed model. The experimental test results show that different types of steel reinforcement have a great effect on the compressive strength of concrete cylinders confined by steel reinforcement, but the different types of steel reinforcement have very little effect on concrete cylinders confined by both steel reinforcement and CFRP. Compared with the stress-strain curves of confined concrete cylinders, we can conclude that the proposed model can provide more effective prediction than others models.

CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가 (Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture)

  • 최세진;박기태;권성준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.75-83
    • /
    • 2014
  • 콘크리트의 취성파괴를 방지하기 위해 강섬유 보강재는 효과적인 복합재료이다. 그러나 시멘트 사용량이 많아지면 건조수축이 증가하고 이로 인해, 강섬유 보강재의 연성증가 효과가 제한될 수 있다. 팽창재를 사용한 콘크리트 내부의 강섬유 보강재는 화학적 프리스트레싱 효과가 발생하여 강섬유 보강효과를 증가시킬 수 있다. 본 연구에서는 CSA 팽창재와 강섬유 보강재를 혼입하여 콘크리트의 역학적인 특성을 분석하였다. 체적비 1~2%의 강섬유 보강재와 시멘트 중량의 10%의 CSA 팽창재를 혼입하였으며, 다양한 역학적 특성과 휨거동을 분석하였다. 강섬유 보강재를 혼입한 CSA 콘크리트는 인장강도와 초기균열강도의 증가를 나타냈으며, 균열후의 파괴에너지 증가와 같은 연성거동을 뚜렷하게 나타내었다. 적절한 팽창재 사용과 최적의 강섬유 보강재의 혼입률이 도출된다면 이들의 상호작용은 콘크리트의 취성을 더욱 효과적으로 제어할 수 있다.

The investigation of pH threshold value on the corrosion of steel reinforcement in concrete

  • Pu, Qi;Yao, Yan;Wang, Ling;Shi, Xingxiang;Luo, Jingjing;Xie, Yifei
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.257-262
    • /
    • 2017
  • The aim of this study is to investigate the pH threshold value for the corrosion of steel reinforcement in concrete. A method was designed to attain the pH value of the pore solution on the location of the steel in concrete. Then the pH values of the pore solution on the location of steel in concrete were changed by exposing the samples to the environment (CO25%, RH 40%) to accelerate carbonation with different periods. Based on this, the pH threshold value for the corrosion of steel reinforcement had been examined by the methods of half-cell potential and electrochemical impedance spectra (EIS). The results have indicated that the pH threshold value for the initial corrosion of steel reinforcement in concrete was 11.21. However, in the carbonated concrete, agreement among whether steel corrosion was initiatory determined by the detection methods mentioned above could be found.

Compressive resistance behavior of UHPFRC encased steel composite stub column

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Zhang, Jiasheng
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.211-227
    • /
    • 2020
  • To explore the feasibility of eliminating the longitudinal rebars and stirrups by using ultra-high-performance fiber reinforcement concrete (UHPFRC) in concrete encased steel composite stub column, compressive behavior of UHPFRC encased steel stub column has been experimentally investigated. Effect of concrete types (normal strength concrete, high strength concrete and UHPFRC), fiber fractions, and transverse reinforcement ratio on failure mode, ductility behavior and axial compressive resistance of composite columns have been quantified through axial compression tests. The experimental results show that concrete encased composite columns with NSC and HSC exhibit concrete crushing and spalling failure, respectively, while composite columns using UHPFRC exhibit concrete spitting and no concrete spalling is observed after failure. The incorporation of steel fiber as micro reinforcement significantly improves the concrete toughness, restrains the crack propagation and thus avoids the concrete spalling. No evidence of local buckling of rebars or yielding of stirrups has been detected in composite columns using UHPFRC. Steel fibers improve the bond strength between the concrete and, rebars and core shaped steel which contribute to the improvement of confining pressure on concrete. Three prediction models in Eurocode 4, AISC 360 and JGJ 138 and a proposed toughness index (T.I.) are employed to evaluate the compressive resistance and post peak ductility of the composite columns. It is found that all these three models predict close the compressive resistance of UHPFRC encased composite columns with/without the transverse reinforcement. UHPFRC encased composite columns can achieve a comparable level of ductility with the reinforced concrete (RC) columns using normal strength concrete. In terms of compressive resistance behavior, the feasibility of UHPFRC encased steel composite stub columns with lesser longitudinal reinforcement and stirrups has been verified in this study.

강섬유 보강 폴리머 콘크리트의 역학적 특성 (Mechanical Properties of Steel Fiber Reinforced Polymer Concrete)

  • 김기락;연규석;이윤수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.336-341
    • /
    • 1998
  • Steel fiber reinforced concrete(SFRC) is a composite material possessing many physical and mechanical properties which are distinct from unreinforced concrete. The use of steel fiber reinforcement to improve the flexural and tensile strengths, extensibility and toughness of ordinary cement concrete is well known at present, but reinforcement of polymer concrete with steel fibers has been hardly reported untill now. The objective of this study was to improve the properties of the polymer concrete by addition of steel fibers. In this paper steel fiber reinforced polymer concrete is prepared with various steel fiber contents and aspect ratio($\ell$ /d), and their mechanical properties were investigated experimentally.

  • PDF

Compression test of RCFT columns with thin-walled steel tube and high strength concrete

  • Xiamuxi, Alifujiang;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.391-402
    • /
    • 2011
  • It is clear from the former researches on reinforced concrete filled steel tubular (RCFT) structures that RCFT structures have higher strength and deformation capacity than concrete filled steel tubular (CFT) structures. However, in the case of actual applications to large-scaled structures, the thin-walled steel tube must be used from the view point of economic condition. Therefore, in this study, compression tests of RCFT columns which were made by thin-walled steel tube or small load-sharing ratio in cooperation with high strength concrete were carried out, meanwhile corresponding tests of CFT, reinforced concrete (RC), pure concrete and steel tube columns were done to compare with RCFT. By the a series of comparison and analysis, characteristics of RCFT columns were clarified, and following conclusions were drawn: RCFT structures can effectively avoided from brittle failure by the using of reinforcement while CFT structures are damaged due to the brittle failure; with RCFT structures, excellent bearing capacity can be achieved in plastic zone by combining the thin-walled steel tube with high strength concrete and reinforcement. The smaller load-sharing ratio can made the reinforcement play full role; Combination of thin-walled steel tube with high strength concrete and reinforcement is effective way to construct large-scaled structures.

FRP Rods로 보강한 콘크리트 보의 전단 내하력의 평가 (Estimation of Shear Carrying Capacity on Concrete Beams, Reinforced with FRP Rods)

  • 최익창;연준희;고재용
    • 한국해양공학회지
    • /
    • 제18권1호
    • /
    • pp.63-68
    • /
    • 2004
  • The purpose of this study is to estimate the contribution of concrete and shear reinforcement, in shear carrying capacity, on concrete beams, reinforced with steel and/or FRP rods. The experimental tests for 12 concrete beams, reinforced with steel and/or FRP rods, are carried out. Experimental parameters includes the mechanical properties of reinforcements in shear and bending, and the ratio of shear reinforcement. This study compares the experimental results of shear carrying capacity in concrete beams, reinforced with steel and/or FRP rods, with the proposed equations. According to the experimental results, the effect of the concrete in concrete beams reinforced with FRP rods is decreased with decreasing Young's modulus of longitudinal tensile reinforcement. This results from the large deflection of concrete beams reinforced with decreasing Young's modulus of longitudinal tensile reinforcement. Also, the contribution of shear reinforcement is smaller than the calculated value, using the truss analogy. This results from the fact that the stress redistribution is not exhibited after the break of shear reinforcement.

철근 콘크리트 시험편의 철근방식에 관한 측정법 (Corrosion Measurements on Reinforcing Rebars in Reinforced Concrete Specimen)

  • 이강균;장지원;한기훈;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.281-286
    • /
    • 1997
  • Recent construction activities and maintenance of marine facilities have been accelerating to keep up with rapid economic growth in Korea. Marine concrete structures are exposed to salts an chloride from ocean environments. The corrosion of reinforcement steel caused by chloride-penetration into concrete may severely effect the durability of concrete structures. The objective of this research is to develop a durable concrete by investigating the corrosion resistance of various corrosion protection systems utilizing different water/cement ratio, silica fumes, corrosion inhibitors and etc. A tow-year verification test on various corrosion protection systems has been doing in the laboratory and at the seaside. Corrosion investigations on reinforcement steel are now under progress for more than 180 concrete specimen. Corrosion-related measurements include macrocell corrosion current, instant-off voltage between corroding and noncorroding reinforcement, chloride contents, the corroded surface areas on the reinforcement steel, and etc. A low level of corrosion is investigated on reinforcement steels in concrete specimen made with corrosion inhibitors or applied aqueous impregnating corrosion inhibitors into their surface, even though high chloride contents of concrete specimen.

  • PDF

鋼纖維에 의한 콘크리트의 補强效果 (Effects of Steel Fiber Concrete)

  • 고재군;김문기;이신호
    • 한국농공학회지
    • /
    • 제27권2호
    • /
    • pp.47-56
    • /
    • 1985
  • Wasting fiberous residues from the cutting processes of steel materials at an iron-Works were mixed with concrete. The strength and toughness of steel fiber concrete with different steel contents were tested in a laboratory. The test results showed that the steel fiber residues can be used for the reinforcement of concrete. The potential applications of such product include floor constructions for facilities like dairy barns, grain storages, and machinery shops. The test results are as follows. 1. The compressive strengths of steel fiber concrete with one percent steel content by volume were 20 percent greater than that of plain concrete. The treatments also increased the concrete toughness by 96 percent. 2. When applied to tensile forces, the steel fiber concrete showed the increased strengths by 20 percent, and the toughness by 48 percent. 3. The steel content levels greater than or equal to 1.5 percent by volume resulted in the decreases of the compressive and tensile strengths of steel fiber concrete by 10 percent as compared to plain concrete. The concrete toughness increased with the steel contents. 4. The reinforcement effects of steel fiber depend on the quality of fiber material being used. Good steel fiber for concrete reinforcement appears to be uniform in shape and component, fine and long, and round-shaped.

  • PDF

A study on bending strength of reinforced concrete filled steel tubular beam

  • Xiamuxi, Alifujiang;Hasegawa, Akira;Tuohuti, Akenjiang
    • Steel and Composite Structures
    • /
    • 제16권6호
    • /
    • pp.639-655
    • /
    • 2014
  • The mechanical characteristic of reinforced concrete filled steel tubular (RCFT) structures are differed from that of concrete filled tubular steel (CFT) structures because the reinforcement in RCFT largely affects the performance of core concrete such as ductility, strength and toughness, and hence the performance of RCFT should be evaluated differently from CFT. To examine the effect axial reinforcement on bending performance, an investigation on RCFT beams with varying levels of axial reinforcement is performed by the means of numerical parametric study. According to the numerical simulation results with 13 different ratios of axial reinforcement, it is concluded that the reinforcement has obvious effect on bending capacity, and the neutral axis of RCFT is different from CFT, and an evaluation equation in which the effect of axial reinforcement is considered for ultimate bending strength of RCFT is proposed.