• Title/Summary/Keyword: Steel mill

Search Result 283, Processing Time 0.025 seconds

Development of Methanol Synthesis Process viaCatalytic Conversion of Simulated Steel Mill Gases for Optimal Productivity (제철 부생가스 모사가스를 활용한 메탄올 합성공정 개발)

  • Geunjae Kwak
    • Applied Chemistry for Engineering
    • /
    • v.35 no.5
    • /
    • pp.410-417
    • /
    • 2024
  • Steel mill gases, including coke oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz gas (LDG), are mainly used as fuels within steel plants, resulting in substantial CO2 emissions. This combustion process accounts for 10% of South Korea's total CO2 emissions. These off-gases, rich in CO, CH4, and hydrogen, have the potential to be converted into valuable chemicals through catalytic processes, thereby reducing CO2 emissions and increasing their economic value. This study investigates the conversion of steel mill gases into methanol, an important platform chemical and cleaner transportation fuel. By using COG and LDG as sources of CO and H2, respectively, a novel process was developed. In this process, H2-rich COG from a simple single-step membrane separation and raw LDG are converted into methanol with high selectivity using a Cu-Zn-Al catalyst. The study identified the optimal gas compositions for methanol production through experimental results, demonstrating efficient methanol synthesis from various compositions of LDG, COG, pure hydrogen, and H2-rich COG. This innovative approach not only aims to reduce specific CO2 emissions from steel plants but also enhances the economic value of the byproduct gases. Thus, the study provides a sustainable and economically advantageous solution for the steel industry.

Experiments on Slip Coefficients of High-Strength Bolt Connection with Weathering Steel (I) (내후성강재 고장력볼트 이음부 미끄럼계수 평가 실험 (I))

  • Park, Yong Myung;Seong, Taek Ryong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.167-175
    • /
    • 2000
  • An experimental research to evaluate the slip coefficient of high-strength slip-critical-type bolt connection of weathering steel plate has been performed in this paper. Experiments were performed with several surface conditions such as clean mill scale with hand or power brush cleaning, shot blast cleaned, inorganic zinc primer coated, and weather coated surfaces. Also, the relaxation of bolt clamping force was estimated during 500 hours. It was ascertained from the experiments that slip coefficients are greater than 0.40 in all faying surface conditions except mill scale surface with power brushing. The quantify of relaxation depended on the surface conditions and was $3{\sim}8%$, i.e., less than 10%.

  • PDF

Experiments on Slip Coefficients of High-Strength Bolt Connection with Weathering Steel (II) (내후성강재 고장력볼트 이음부 미끄럼계수 평가 실험 (II))

  • Park, Yong Myung;Seong, Taek Ryong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.177-185
    • /
    • 2000
  • An experimental research to evaluate the slip coefficients of high-strength friction-type bolt connection of weathering steel plate has been performed in this paper. The test specimens with mill scale or shot blast had been exposed in open air during 3 and 6 months and cleaning of rust surface by hand brushing, power tool brushing and no cleaning was considered. The relaxation of bolt clamping force had also been measured during 600 hours. It was found that slip coefficients increased to the value over 0.6 with exposure except mill scale surface by power tool brushing. The relaxation of bolt tension force in exposed specimens also increased and maximum value reached to about 10%.

  • PDF

A Camber Monitoring System of RM Zone based on Direction Selective Edge Detection Algorithm (방향 선택형 에지검출 알고리즘 기반의 RM존 캠버 모니터링 시스템)

  • Kim, Hyun-Soo;Choi, Yong Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.713-717
    • /
    • 2015
  • In this paper, we propose camber monitoring system which is using on hot rolling process. In roughing mill which is one of the rolling part in hot rolling process, steel plate can be bended in width direction under the imbalance of rolling condition. This bending of steel plate in width direction is called as camber. In order to measure the camber, first, cameras which are installed over transport pathway of steel plate take pictures of whole shape of steel plate. And location value of steel plate edge is extrated from these pictures by edge detection algorithm. But, there are a lot of noises which are generated by such as water sprays, dusts, peripheral equipments in these pictures, and these noises make edge detection difficult. In order to solve this kind of problem, we developed a direction selective edge detection algorithm, and applicated in our camber monitoring system. As a result, we got stable results in spite of process noises.

Applications of Data Mining Techniques to Operations Planning for Real Time Order Confirmation (실시간 주문 확답을 위한 데이터 마이닝 기반 운용 계획 모델)

  • Han Hyun-Soo;Oh Dong-Ha
    • Korean Management Science Review
    • /
    • v.21 no.3
    • /
    • pp.101-113
    • /
    • 2004
  • In the rapidly propagating Internet based electronic transaction environment. the importance of real time order confirmation has been more emphasized, In this paper, using data mining techniques, we develop intelligent operations decision model to allow real time order confirmation at the time the customer places an order with required delivery terms. Among various operation plannings used for order fulfillment. mill routing is the first interface decision point to link the order receiving at the marketing with the production planning for order fulfillment. Though linear programming based mathematical optimization techniques are mostly used for mill routing problems, some early orders should wait until sufficient orders are gathered for optimization. And that could effect longer order fulfillment lead-time, and prevent instant order confirmation of delivery terms. To cope with this problem, we provide the intelligent decision model to allow instant order based mill routing decisions. Data mining techniques of decision trees and neural networks. which are more popular in marketing and financial applications, are used to develop the model. Through diverse computational trials with the industrial data from the steel company. we have reported that the performance of the proposed approach is effective compared to the present heuristic only mill routing results. Various issues of data mining techniques application to the mill routing problems having linear programming characteristics are also discussed.

The Effect of Roll Arrangement in the Cold Rolling Mill on the Wear (냉간 압연기용 롤의 배열이 마멸에 미치는 영향)

  • 손영지
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.74-80
    • /
    • 1999
  • Work roll wear in the cold rolling of mild steel strip is strongly affected by rolling materials, rolling conditions such as roll arrangement in the cold rolling mill and lubrication. The tests were performed to find the effects of roll arrangement n the cold rolling mill on the work roll wear under the same lubricating conditions. The obtained results are as follows:If the distance of cold rolling is about 60km, the surface roughness of its was reduced by half(Ra 0.49${\mu}{\textrm}{m}$) and Pc(peak count) also was decreased to 60 ea/cm.It is easier for CC(Continuous casting) to make a slip on rolling than IC(Ingot casting). It is due to surface mirror in which first residual product appears and iron powder included Al2O3 is sticked. Because bending degree of 4Hi-rolling mill is higher than 6Hi-rolling mill, the first surface mirror was occurred to its center-point which is loaded strongly. 6Hi-rolling mill shape-controlled by intermediate roll doesn't need the initial crown to work roll. Therefore, fatigue and wear would appear a little bit.

  • PDF

The Cause of Vibration at Finishing Stands in a Hot Strip Mill (열간 사상압연기에서의 진동 원인)

  • 손붕호;노용래;이영호
    • Journal of KSNVE
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 1994
  • Chatter vibration of a rolling machine in steel plants has a significant effect on thickness quality of the products. The cause and mechanism of the mill chattering is addressed through measurement of vibration and dynamic torque. An FFT system and an FM telemetry system are employed to collect data at several locations of possible damages. The results reveal the followings as sources of the mill vibration. The first is defects in roller bearings of a work roll chock. The second is instability of an oil film bearing in a backup roll chock, which has been investigated with a theoretical model describing the phenomenon. Dynamic torque is not the direct cause of mill vibration but rather influenced by the vibration. Appropriate treatment methods are suggested to address each of the above sources.

  • PDF

Development of Design and Manufacturing Technology for Endmills (엔드밀 설계 및 제작 기술에 관한 연구)

  • 고성림;김용현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.69-72
    • /
    • 2002
  • The geometry parameter of tool such as rake angle and clearance angle is defined clearly to solve the difference in communication between design and measurement stage. Using the developed simulation program, wheel is properly determined and end mill can be manufactured accurately. The performance test with well defined end mill provides sufficient information to decide optimal geometry. For machining hardened steel, end mills are designed and manufactured. Optimal rake angle and clearance angle is obtained from performance test. A specific software for automatic end mill production is developed far simulation and fur generation of NC code as Cad/CAM system.

  • PDF

Machining technology for precision improvement of steel pipe in tube-mill processing (조관공정에서 강관의 정밀도 향상을 위한 가공 기술)

  • 정호윤;김정석;강명창;김경수;김정근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.488-493
    • /
    • 2003
  • This paper presents new skill in tube-mill processing getting the increase in production efficiency and quality in response to the recent request of high grade pipe. In this study, researchers developed the method to improve the precision of pipe and tool life in tube-mill processing. Optimum tool shape is devised by analyzing various simulation and mechanism in cutting process. In order to verify the confidence of the proposed machining technology, it is applied to the real processing machinery in the field.

  • PDF