DOI QR코드

DOI QR Code

Development of Methanol Synthesis Process viaCatalytic Conversion of Simulated Steel Mill Gases for Optimal Productivity

제철 부생가스 모사가스를 활용한 메탄올 합성공정 개발

  • Geunjae Kwak (Department of Science Education, Gwangju National University of Education)
  • 곽근재 (광주교육대학교 과학교육과)
  • Received : 2024.08.18
  • Accepted : 2024.09.01
  • Published : 2024.10.10

Abstract

Steel mill gases, including coke oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz gas (LDG), are mainly used as fuels within steel plants, resulting in substantial CO2 emissions. This combustion process accounts for 10% of South Korea's total CO2 emissions. These off-gases, rich in CO, CH4, and hydrogen, have the potential to be converted into valuable chemicals through catalytic processes, thereby reducing CO2 emissions and increasing their economic value. This study investigates the conversion of steel mill gases into methanol, an important platform chemical and cleaner transportation fuel. By using COG and LDG as sources of CO and H2, respectively, a novel process was developed. In this process, H2-rich COG from a simple single-step membrane separation and raw LDG are converted into methanol with high selectivity using a Cu-Zn-Al catalyst. The study identified the optimal gas compositions for methanol production through experimental results, demonstrating efficient methanol synthesis from various compositions of LDG, COG, pure hydrogen, and H2-rich COG. This innovative approach not only aims to reduce specific CO2 emissions from steel plants but also enhances the economic value of the byproduct gases. Thus, the study provides a sustainable and economically advantageous solution for the steel industry.

국내에서 발생되는 철강 부생가스의 대부분은 공정 내 열원으로 활용되거나 발전용 연료로 사용되며, 제철공정에서 발생되는 CO2는 국내 배출 온실가스의 약 10%를 차지한다. 철강 부생가스 내 가스혼합물은 화합물 제조에 적합한 C1가스와 수소가 상당량 포함되어 있어, 열원으로 활용하는 것보다 고부가가치 화합물로 전환하는 것이 온실가스 및 화석연료 사용 저감에 유리하다. 본 연구에서는 제철 부생가스를 메탄올로 전환하고자 하였으며, 메탄올 합성에 적합한 합성가스 조성을 얻기 위해 CO의 원료로 전로가스(LDG), H2의 원료로 부생수소나 코크스오븐가스(COG)를 혼합하여 사용하였다. 간단한 단일 단계 막분리를 적용하여 H2가 풍부한 COG와 LDG를 CuZnAl계 촉매를 사용해 최적의 메탄올 수율을 확인하였다. 실험을 통해 LDG와 (COG, H2-rich COG, 부생수소)의 다양한 조성에서 메탄올 생산을 최적화할 수 있는 가스 조성을 제안하였다. 개발한 공정을 통해 제철공정의 CO2 배출량을 줄이고, 부생가스의 경제적 가치를 높여 제철산업에 지속 가능하고 경제적으로 유리한 화학공정을 제공하고자 한다.

Keywords

Acknowledgement

본 논문의 실험과 시뮬레이션을 위해 노력해준, 그러나 지금은 연구를 하고 있지 않은 김고운 연구원에게 감사의 인사를 남깁니다.

References

  1. Y. Lee, S. Cho, and Y. Seo, Realizing 2050 Net-zero in South Korea: From adaptive reduction to proactive response, Futures, 154, 103267 (2023).
  2. K. Girod, H. Lohmann, S. Schluter, and S. Kaluza, Methanol synthesis with steel-mill gases: Simulation and practical testing of selected gas utilization scenarios, Processes, 8, 1673 (2020).
  3. J. Lee, S. Shin, G. Kwak, M. Lee, I. Lee, and Y. Yoon, Techno-economic evaluation of polygeneration system for olefins and power by using steel-mill off-gases, Energy Convers. Manag., 224, 113316 (2020).
  4. F. Galli, J. Lai, J. D. Tommaso, G. Pauletto, and G. S. Patience, Gas to liquids techno-economics of associated natural gas, bio gas, and landfill gas, Processes, 9, 1568 (2021).
  5. X. Zhao, A. Nagi, D. M. Walker, T. Roberge, M. Kastelic, B. Joseph, and J. N. Kuhn, Conversion of landfill gas to liquid fuels through a TriFTS (tri-reforming and Fischer-Tropsch synthesis) process: A feasibility study, Sustain. Energy, 3, 539-549 (2019).
  6. Y. Xu, D. Liu, and X. Liu, Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites, Appl. Catal. A Gen., 552, 168-183 (2018).
  7. M. Konarova, W. Aslam, and G. Perkins, Hydrocarbon Biorefinery (Sustainable Processing of Biomass for Hydrocarbon Biofuels), 1st ed., 77-96, Elsevier, Amsterdam, Netherlands (2022).
  8. Carbon Report 2012 (Toward a Green Economy), POSCO ESG Report (2013). Retrieved from http://www.posco.co.kr.
  9. T. J. Deka, A. I. Osman, D. C. Baruah, and D. W. Rooney, Methanol fuel production, utilization, and techno-economy: A review, Environ. Chem. Lett., 20, 3525-3554 (2022).
  10. S. Li, Y. Xue, and P. Wang, Transforming China's chemicals industry: Pathways and outlook under the carbon neutrality goal, RMI 2022 Report (2022). Retrieved from http://www.rmi.org.
  11. Y. Qian, Y. Man, L. Peng, and H. Zhou, Integrated process of coke-oven gas tri-reforming and coal gasification to methanol with high carbon utilization and energy efficiency, Ind. Eng. Chem. Res., 54, 2519-2525 (2015).
  12. R. Razzaq, C. Li, and S. Zhang, Coke oven gas: Availability, properties, purification, and utilization in China, Fuel, 113, 287- 299 (2013).
  13. Q. Yi, M. Gong, Y. Huang, J. Feng, Y, Hao, J. Zhang, and W. Li, Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance, Energy, 112, 618-628 (2016).
  14. Roine A, Outokumpu HSC Chemistry for windows, Outokumpu Research Oy: Pori, Finland (2002).
  15. K. Denny, S. Kok, and T. Rex, Integrated biorefineries, Encyclopedia of Sustainable Technologies, 4, 299-314 (2017).
  16. G. Leonzio, Methanol synthesis: Optimal solution for a better efficiency of the process, Processes, 6, 20 (2018).