• Title/Summary/Keyword: Steel material

Search Result 5,014, Processing Time 0.031 seconds

Microstructure and Wear Properties of Oxide Dispersion Strengthened Steel Powder Added Steel-Based Composite Material for Automotive Part (산화물 분산 강화 강 분말이 첨가된 자동차 부품용 철계 복합 소재의 미세조직 및 마모 특성)

  • Kim, Young-Kyun;Park, Jong-Kwan;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • In order to expand the application of oxide dispersion-strengthened (ODS) steel, a composite material is manufactured by adding mechanically alloyed ODS steel powder to conventional steel and investigated in terms of microstructure and wear properties. For comparison, a commercial automobile part material is also tested. Initial microstructural observations confirm that the composite material with added ODS steel contains i) a pearlitic Fe matrix area and ii) an area with Cr-based carbides and ODS steel particles in the form of a $Fe-Fe_3C$ structure. In the commercial material, various hard Co-, Fe-Mo-, and Cr-based particles are present in a pearlitic Fe matrix. Wear testing using the VSR engine simulation wear test confirms that the seatface widths of the composite material with added ODS steel and the commercial material are increased by 24% and 47%, respectively, with wear depths of 0.05 mm and 0.1 mm, respectively. The ODS steel-added composite material shows better wear resistance. Post-wear-testing surface and cross-sectional observations show that particles in the commercial material easily fall off, while the ODS steel-added material has an even, smooth wear surface.

Study on the Mechanical Property of Turbopump Material (터보펌프 소재의 기계적 물성치 검토에 관한 연구)

  • Lee, Kwan-Ho;Jeon, Seong-Min;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.346-352
    • /
    • 2003
  • The study was performed to search on alternative material for turbopump parts made of Russian material by analyzing and comparing chemical and mechanical material properties. Iron base material was generally used for turbopump. This material can be categorized into stainless steel and heat resisting steel by quantity of additional elements. Each steel was also classified into austenite steel, ferrite steel, and martensite steel. Alternative materials for turbopump inducer, impeller and casing are chosen by JIS SUS 631 and 321 as a result of this study. Because the material of Russian turbopump turbine may be developed by Russia itself, alternative material can be hardly found. However, Inconel 718 for turbine material is thought to be proper in the aspect of hardness considering general use of this material for turbopump turbine in Japan and France.

  • PDF

Topology optimization of reinforced concrete structure using composite truss-like model

  • Yang, Zhiyi;Zhou, Kemin;Qiao, Shengfang
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.79-85
    • /
    • 2018
  • Topology optimization of steel and concrete composite based on truss-like material model is studied in this paper. First, the initial design domain is filled with concrete, and the steel is distributed in it. The problem of topology optimization is to minimize the volume of steel material and solved by full stress method. Then the optimized steel and concrete composite truss-like continuum is obtained. Finally, the distribution of steel material is determined based on the optimized truss-like continuum. Several numerical results indicate the numerical instability and rough boundary are settled. And more details of manufacture and construction can be presented based on the truss-like material model. Hence, the truss-like material model of steel and concrete is efficient to establish the distribution of steel material in concrete.

Behavior of PHC Pile Connected by Bolted Rectangular Steel Tubular (볼트식 각관형식으로 이음된 PHC 말뚝의 거동)

  • Yoon, Won-Sub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • In this study, the applicability of PHC pile jointing method using rectangular steel tubular was studied. PHC pile joints are welded and bolt assembly. The bolt assembly method is a method that improves the various problems of welded joints. Numerical analysis and tests were conducted to analyze the applicability of the PHC pile jointing method using a rectangular steel tubular. The tests were carried out to test the material properties of the rectangular steel tubular material and the bending test of the pile joints. The numerical analysis was interpreted in the same conditons as the tests conditions. As a result, the material strength of each rectangular steel tubular could be used as a joint material. In the bending test, it was evaluated as a sTable material above the allowable stress of piles. In the numerical analysis results under the same conditions as the tests, it was possible to apply the pile joint material without exceeding the allowable stress of the material.

The Change of Sliding wear properties of Carbon Steel against several hardened steels (미끄럼 접촉을 하는 탄소강의 경도차 조합에 따른 마모특성변화 연구)

  • Lee Han Yeong;Kim Geun Yeong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.85-90
    • /
    • 2003
  • Although wear resistance of material improves with increasing its hardness, it is known that the wear resistance of steel is varied with hardness of counter material. In this context, wear properties of steel must be depended on the difference of hardness between the testpiece and the counter material. In this study, using the pin-on-disc type wear machine, annealed carbon steels were tested against ahoy tool steels with various levels of hardness. Then the changes of wear properties of carbon steel according to the hardness of counter material were investigated and the morphology of worn surface after test were evaluated. The results indicate that if there are no remarkable difference of hardness between them, wear resistance of carbon steel in running-in wear decreases with increasing the hardness of counter material. However, its wear properties at the range of high sliding speed have no relation with hardness of counter material. It is clear that wear properties is influenced by the formation of oxide of steel on their worn surface during wear.

  • PDF

Influence of pH in 3.5% NaCl aqueous solution on corrosion fatigue-fracture of dual phase steel (3.5% NaCl 수용액의 pH변화가 복합조직강의 부식피로파괴에 미치는 영향)

  • 오세욱;안호민;도영문
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.123-129
    • /
    • 1987
  • Corrosion fatigue fracture of dual phase steel(SS41) and raw material steel(SS41) were investigated in 3.5% NaCl aqueous solution at PH 4,6,9 and 11. The fatigue limit of dual phase steel is increased approximately 1.8 times larger than that of raw material in air. The corrosion fatigue life of dual phase steel is about 5-10 times larger than that of raw material in 3.5% NaCl aqueous solution. The reduction of fatigue life is larger for the acidsalt solution than for the alkali salt solution. The reduction of stress level on the reduction ratio of corrosion fatigue life is large as pH 6-11. The reduction ratio of corrosion fatigue life of dual phase steel and raw material is nearly coincided at pH 2. While at pH4-2 the reduction ratio of corrosion fatigue life only depends on the corrosion effect. It has been found that the corrosion resistance effect of dual phase steel is smaller than that of raw material in corrosion fatigue crack propagation rate. As pH below 6 is changed, it can be clearly observed from raw material that the brittle intergranular fracture is characterized, and from the above result, the influence of corrosion of dual phase steel is small.

  • PDF

Study on Fatigue Strength of Friction Welded S20C and SUS27B (마찰용접(摩擦熔接)된 S20C와 SUS27B의 피로강도(疲勞强度)에 대(對)한 연구(硏究))

  • Dong-Suk,Um;Sung-Won,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.2
    • /
    • pp.13-24
    • /
    • 1971
  • When friction welded material is actually used for parts of a machine, its fatigue strength is an important problem. Especially, there is no report which deals with mechanical properties of friction welded mild steel(S20C) and stainless steel(SUS27B). In this study are compared the compared the characteristics of such specimens as mild steel, stainless steel and welded material in the S-N diagram. And metallurgical consideration is directed to HAZ. The obtained results in these studies are summarized as follows; 1) The fatigue strength of welded material is slightly less than those of mild steel and stainless steel. 2) In the S-N diagram the knuckle point of welded material has larger number of cycle than that of stainless steel. 3) The fatigue notch factor of welded material is between those of mild steel and stainless steel. 4) mHv is the largest on the weld interface. It is larger before than after fatigue test on the stainless steel side. On the mild steel side it is the way around.

  • PDF

A study on the change of thickness according to material change of water purifier cold and hot water tank cylindrical drawing products (정수기 냉온수 탱크 원통형 드로잉 제품의 재질 변화에 따른 두께 변화에 관한 연구)

  • Jang, Eun-Jeong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.13-18
    • /
    • 2021
  • In plate forming technology, cylindrical drawing process is widely used in industry due to technological development. In this study, we used stainless steel 3042B and stainless steel 304J1, which are the most commonly used materials in the production of cold and hot water tanks for water purifiers, among cylindrical drawing products. Under the same conditions, the thickness of the sidewall of the product formed by drawn experiment was studied. As a result of the experiment, the bottom thickness of stainless steel 304J1 was considered to be thick. It is judged that the defect rate can be reduced by changing the breaking phenomenon of the floor surface of the cold and hot water bottles to the material of stainless steel 304j1. Stainless steel 304 2B material shows a sharp change in thickness from punch corner R to sidewall position, while stainless steel 304J1 material showed a uniform change from punch corner R to sidewall position. Stainless steel 304J1 material is considered to improve the clamping of the product in the process of extracting the product after hand drawing. The appearance of stainless steel 3042B products is considered to produce more wrinkles in the flange, which exerts greater tensile force on the sidewall during molding, resulting in uneven sidewall thickness.

Influence of Notch Change on Corrosion Fatigue Fracture in F.E.M. Dual phase Steel of SS41 Steel (SS41강의 F.E.M.복합조직강에서 노치변화가 부식피로파괴에 미치는 영향)

  • 도영민;이규천
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.44-50
    • /
    • 2001
  • The rotated bending fatigue test was conducted in air md in 3.5% NaCl salt solution to investigate the fatigue fracture behaviour of raw material and F.E.M dual phase steel made from raw material(SS41) by a suitable heat treatment. This study has compared the initial microcrack creation of material by tensile test with that by fatigue test. And the rotated bending test of cantilever type under the condition of 3.5% NaCl salt solution and air has investigated the corrosion fatigue fracture behaviour with the variation of stress concentration factor determined by each of notch shapes. The initial microcrack have been developed in fragile grainboundary with general corrosion occurring in raw material : in the pits built up by corrosion in F.E.M. dual phase steel because pits bring out stress concentration. It is small that the degree of decrease in corrosion fatigue life for F.E.M. dual phase steel compared with raw material because the notch sensitivity of F.E.M. dual phase steel is lower than raw material in reason of characteristics with two-phase construction.

  • PDF

Tribological Properties of Hybrid Friction Materials: Combining Low-steel and Non-steel Friction Materials (금속계와 유기계 마찰재의 분포에 따른 하이브리드 마찰재의 마찰 특성)

  • Kim, JinWoo;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.28 no.3
    • /
    • pp.117-123
    • /
    • 2012
  • Tribological properties of hybrid type friction materials were studied. Hybrid friction materials were produced by combining non-steel(NS) and low-steel(LS) type friction materials. The emphasis of the investigation was given to possible synergistic effects from the two different friction materials, in terms of friction stability at high temperatures and the amplitude of friction oscillation, also known as stick-slip at low sliding speeds. The high temperature friction test results showed that the friction effectiveness of the hybrid friction material was well sustained compared to LS and NS friction materials. Wear resistance of the hybrid type was similar to LS friction materials. Examination of the rubbing surfaces after tests revealed that the friction characteristics of the hybrid friction material were attributed to the wear debris produced from low-steel friction materials, which were migrated to the surface of the non-steel friction material, forming new contact plateaus. The stick-slip amplitude and its frequency were pronounced when non-steel friction material was tested, while hybrid and low-steel types showed relatively small stick-slip amplitudes. These results suggest possible improvement of tribological properties by designing a hybrid composite of low-steel and non-steel friction materials.