• Title/Summary/Keyword: Steel jacketing

Search Result 51, Processing Time 0.026 seconds

Developing Fragility Curves for Concrete Bridges Retrofitted with Steel Jacketing (Steel Jacket으로 보강된 콘크리트 교량에 대한 지진취약도 개발)

  • Kim, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.75-83
    • /
    • 2003
  • The ultimate goal of this research is to improve highway system performance in earthquakes by evaluating the effectiveness of retrofitting bridges with column jacketing. The objective of the study is to determine if steel jacketing increases the ductility capacity of bridge columns and hence improves the fragility characteristics of the bridge. Analytical fragility curves are used to adjust the empirical fragility curves obtained for the unretrofitted bridges using seismic damage data collected following past earthquakes. The adjustment was carried out by increasing the median values of the empirical curves through comparison with the median values of the corresponding fragility curves obtained analytically, both before and after being retrofit.

Load-resisting characteristics for RC Retrofitting Columns under Cyclic Loads (반복하중을 받는 RC 기둥보강부재의 내력특성실험)

  • 김종임;홍남표;윤정배;정일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.589-596
    • /
    • 1998
  • Experimental studies are investigated for RC column retrofitting under cyclic load. Design considerations are jacketing of steel plate of carbon fiber with epoxy bonding, use of unbonded plate, additional concrete grouting, ratio of additional longitudinal steel reinforcement and longitudinal configuration of additional ties. Investigated results are 1) jacketing and additional reinforcements are effective for strengthening, 2) use of additional grouting is less effective with respect to increased section. Future studies are needed to evaluate the requirements about additional reinforcements for member stress level, 3) bond between original and additional grout concrete.

  • PDF

An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method (격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 구조성능평가)

  • Moon, Hong Bi;Lee, Jeong In;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • In the case of columns in buildings with soft story, the concentration of stress due to the difference in stiffness can damage the columns. The irregularity of buildings including soft story requires retrofit because combined load of compression, bending, shear, and torsion acts on the structure. Concrete jacketing is advantageous in securing the strength and stiffness of existing members. However, the brittleness of concrete make it difficult to secure ductility to resist the large deformation, and the complicated construction process for integrity between the existing member and extended section reduces the constructability. In this study, two types of Steel Grid Reinforcement (SGR), which are Steel Wire Mesh (SWM) for integrity and Steel Fiber Non-Shrinkage Mortar (SFNM) for crack resistance are proposed. One reinforced concrete (RC) column with non-seismic details and two columns retrofitted with each different types of proposed method were manufactured. Seismic performance was analyzed for cyclic loading test in which a combined load of compression, bending, shear, and torsion was applied. As a result of the experiment, specimens retrofitted with proposed concrete jacketing method showed 862% of maximum load, 188% of maximum displacement and 1,324% of stiffness compared to non-retrofitted specimen.

Seismic retrofit of a soft first story structure considering soil effect

  • Michael Adane;Jinkoo Kim
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.345-352
    • /
    • 2023
  • This paper studied the effect of soil-structure interaction (SSI) on the seismic response and retrofit of a reinforced concrete structure with a soft-first story for different soil types. A 5-story structure built on a 30m deep homogeneous soil mass was considered as a case study structure, and steel column jacketing and steel bracing were chosen as seismic retrofit methods. Seismic responses of a fixed-base and a flexible base structure subjected to seven scaled earthquake records were obtained using the software OpenSees to investigate the effect of soil on seismic response and retrofit. The nonlinearBeamColumn elements with the fiber sections were used to simulate the nonlinear behavior of the beams and columns. Soil properties were defined based on shear wave velocity according to categorized site classes defined in ASCE-7. The finite element model of the soil was made using isoparametric four-noded quadrilateral elements and the nonlinear dynamic responses of the combined system of soil and structure were calculated in the OpenSees. The analysis results indicate that the soil-structure interaction plays an important role in the seismic performance and retrofit of a structure with a soft-first story. It was observed that column steel jacketing was effective in the retrofit of the model structure on a fixed base, whereas stronger retrofit measures such as steel bracing were needed when soil-structure interaction was considered.

A new steel jacketing method for RC columns and a modified constitutive model of jacketed concrete (RC 기둥 보강을 위한 새로운 강판 보강기법 및 수정 연속체 모델)

  • Tae, Ghi Ho;Choi, Eun Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.675-681
    • /
    • 2008
  • This study introduced a new steel-jacketing method to retrofit RC columns. It also estimated the performance of steel-jacketed concrete cylinders. Twelve concrete cylinders were fabricated with varying steel jacket thicknesses of 1.0, 1.5, and 2.0 mm. Lateral confining pressure was applied with three clamps and the performance of plain concrete cylinders was compared with that of steel-jacketed cylinders. Steel jacket proved to be effective in increasing the strength of the cylinder. Finally, Li's constitutive model was compared with that of the experimentalresults. However, Li's model showed incongruity in Region II, which indicates the region after the yield of steel jackets. Therefore, the modified value of n was used for the region and the model showed a good agreement.

A new steel jacket for concrete cylinders by using external pressure (외부압력을 이용한 강판보강 콘크리트 시편의 거동분석)

  • Cho, Sung-Chul;Choi, Eun-Soo;Park, Tae-Hyo;Cho, Baik-Soon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.511-512
    • /
    • 2009
  • The purpose of this study was to propose a new steel jacketing method that does not require a grout between steel and concrete and to compare its structure performance with that of the others jacketed concrete. The proposed steel jacketing method uses external pressures on steel jackets to attach it to the surface of concrete.

  • PDF

Development of Fragility Curves of Concrete Bridges (콘크리트 교량의 손상도 곡선 개발)

  • 김상훈;김두희;서형렬;김종인
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.319-325
    • /
    • 2003
  • The fragility curves of seismic retrofitted bridges by steel jacketing of bridge columns and restrainers at expansion joints after the 1994 Northridge earthquake are developed. Fragility curves are represented by lognormal distribution functions with two parameters(fragility parameters consisting of median and log-standard deviation) and developed as a function of peak ground acceleration (PGA). Two parameters in the lognormal distribution are estimated by the maximum likelihood method. The sixty ground acceleration time histories for Los Angeles area developed for FEMA SAC project are used for the dynamic analysis of the bridges and a computer code is developed to calculate hysterestic parameters of bridge columns before and after steel jacketing. The effect of retrofit is expressed in terms of the increase of the median value of the fragility curve for the retrofitted bridge from that of the bridge before retrofit. The comparison of fragility curves of the bridges before and after column retrofit demonstrates that the improvement of the bridges with steel jacketing on the seismic performance is excellent for the damage states defined in this study. The comparison of fragility curves of the bridges before and after restrainers at expansion joints also shows the improvement in the seismic performance of restrained bridges for the severe damage states.

  • PDF

Seismic performance comparison of existing public facilities strengthened with RC jacketing and steel bracing

  • Zu Irfan;Abdullah Abdullah;Azmeri Azmeri;Moch. Afiffuddin;Rifqi Irvansyah
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.43-56
    • /
    • 2023
  • Banda Aceh is one of the areas that sustains the most damage during a natural disaster because it contains so many houses, office buildings, public facilities, and schools. Public structures in coastal areas are highly susceptible to earthquakes, resulting in high casualties and property damage. Several public structures were reconstructed during the reconstruction and rehabilitation period. Because this building is located in an area with a high risk of earthquakes, its capacity must be analyzed initially. Additionally, history indicates that Aceh Province has been struck by numerous earthquakes, including the largest ever recorded in 1983 and the most recent earthquake with a magnitude of 9.3 SR on December 26, 2004. The city of Banda Aceh was devastated by this earthquake, which was followed by a tsunami. The possibility of a large earthquake in Banda Aceh City necessitates that the structures constructed there be resistant to seismic risk. This study's objective was to evaluate the seismic performance of the existing building by applying the method of strengthening the structure in the form of jacketing columns and the addition of steel bracing in order to estimate the performance of the structure using multiple ground motions. Therefore, several public buildings must be analyzed to determine the optimal seismic retrofitting technique.

Strengthening of isolated square footings using passive wrapping systems

  • Lu, Xingji;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.41-54
    • /
    • 2021
  • This paper introduced three new strengthening systems for isolated footings: BFRP wrapping system, CFRP wrapping system, and steel jacketing system. The proposed systems are more practical than the current traditional methods, which involves installing many dowel bars and splicing reinforcing steels to join new and old concrete segments. In the proposed three new systems, BFRP wraps, CFRP wraps, or steel jackets are installed on the exterior surface of the enlarged footing, with construction adhesive or a few steel dowels being applied to the contact surfaces. To investigate the effectiveness of three systems, forty-four models were constructed in ABAQUS, with different parameters being considered. All footings investigated failed in punching shear, including original and retrofitted footings. According to FEA results and parametric studies, the three strengthening systems were capable of improving the punching shear resistance of footings. By introducing a new factor η, the punching shear equation in Eurocode 2 was modified to predict the punching shear resistances of the strengthened footings. A linear formula was developed to present the relationship between the new factor η and the investigated parameters.

Behavior of steel-concrete jacketed corrosion-damaged RC columns subjected to eccentric load

  • Hu, Jiyue;Liang, Hongjun;Lu, Yiyan
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.689-701
    • /
    • 2018
  • Corrosion of steel reinforcement is a principal cause of deterioration of RC columns. Making these corrosion-damaged columns conform to new safety regulations and functions is a tremendous technological challenge. This study presented an experimental investigation on steel-concrete jacketed corrosion-damaged RC columns. The influences of steel jacket thickness and concrete strength on the enhancement performance of the strengthened specimens were investigated. The results showed that the use of steel-concrete jacketing is efficient since the stub strengthened columns behaved in a more ductile manner. Moreover, the ultimate strength of the corrosion-damaged RC columns is increased by an average of 5.3 times, and the ductility is also significantly improved by the strengthening method. The bearing capacity of the strengthening columns increases with the steel tube thickness increasing, and the strengthening concrete strength has a positive impact on both bearing capacity, whereas a negative influence on the ductility. Subsequently, a numerical model was developed to predict the behavior of the retrofitted columns. The model takes into account corrosion-damage of steel rebar and confining enhancement supplied by the steel tube. Comparative results with the experimental results indicated that the developed numerical model is an effective simulation. Based on extensive verified numerical studies, a design equation was proposed and found to predict well the ultimate eccentric strength of the strengthened columns.