• 제목/요약/키워드: Steel jacketing

검색결과 51건 처리시간 0.022초

Steel Jacket으로 보강된 콘크리트 교량에 대한 지진취약도 개발 (Developing Fragility Curves for Concrete Bridges Retrofitted with Steel Jacketing)

  • Kim, Sang-Hoon
    • 한국지진공학회논문집
    • /
    • 제7권5호
    • /
    • pp.75-83
    • /
    • 2003
  • 본 연구의 궁극적인 목표는 콘크리트 교량의 교각을 Steel Jacket으로 보강한 효과를 정량적으로 산정함으로써, 지진 발생시 도로/교통 시스템의 역할을 평가할 수 있는 자료를 제공하는 데에 있다. Steel Jacket으로 보강 시, 교각의 연성능력이 어느 정도 증가되는지, 또 그로 인해 교량의 취약 상태가 어느 정도 개선되는지를 취약도 곡선을 통하여 나타내었다. 본 연구에서 해석적으로 구한 취약도 곡선이, 과거 지진 발생시 수집된 손상 자료를 이용하여 작성된 보강이 안된 교량의 취약도 곡선을 보정하는데 사용하였다. 그 보정은 Steel Jacket 보강 전과 후의 취약도 곡선상의 중간 값들을 비교해 그 증가분 만큼을 반영하는 방식으로 수행되었다.

반복하중을 받는 RC 기둥보강부재의 내력특성실험 (Load-resisting characteristics for RC Retrofitting Columns under Cyclic Loads)

  • 김종임;홍남표;윤정배;정일영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.589-596
    • /
    • 1998
  • Experimental studies are investigated for RC column retrofitting under cyclic load. Design considerations are jacketing of steel plate of carbon fiber with epoxy bonding, use of unbonded plate, additional concrete grouting, ratio of additional longitudinal steel reinforcement and longitudinal configuration of additional ties. Investigated results are 1) jacketing and additional reinforcements are effective for strengthening, 2) use of additional grouting is less effective with respect to increased section. Future studies are needed to evaluate the requirements about additional reinforcements for member stress level, 3) bond between original and additional grout concrete.

  • PDF

격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 구조성능평가 (An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method)

  • 문홍비;이정인;이영학
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.41-49
    • /
    • 2022
  • In the case of columns in buildings with soft story, the concentration of stress due to the difference in stiffness can damage the columns. The irregularity of buildings including soft story requires retrofit because combined load of compression, bending, shear, and torsion acts on the structure. Concrete jacketing is advantageous in securing the strength and stiffness of existing members. However, the brittleness of concrete make it difficult to secure ductility to resist the large deformation, and the complicated construction process for integrity between the existing member and extended section reduces the constructability. In this study, two types of Steel Grid Reinforcement (SGR), which are Steel Wire Mesh (SWM) for integrity and Steel Fiber Non-Shrinkage Mortar (SFNM) for crack resistance are proposed. One reinforced concrete (RC) column with non-seismic details and two columns retrofitted with each different types of proposed method were manufactured. Seismic performance was analyzed for cyclic loading test in which a combined load of compression, bending, shear, and torsion was applied. As a result of the experiment, specimens retrofitted with proposed concrete jacketing method showed 862% of maximum load, 188% of maximum displacement and 1,324% of stiffness compared to non-retrofitted specimen.

Seismic retrofit of a soft first story structure considering soil effect

  • Michael Adane;Jinkoo Kim
    • Earthquakes and Structures
    • /
    • 제24권5호
    • /
    • pp.345-352
    • /
    • 2023
  • This paper studied the effect of soil-structure interaction (SSI) on the seismic response and retrofit of a reinforced concrete structure with a soft-first story for different soil types. A 5-story structure built on a 30m deep homogeneous soil mass was considered as a case study structure, and steel column jacketing and steel bracing were chosen as seismic retrofit methods. Seismic responses of a fixed-base and a flexible base structure subjected to seven scaled earthquake records were obtained using the software OpenSees to investigate the effect of soil on seismic response and retrofit. The nonlinearBeamColumn elements with the fiber sections were used to simulate the nonlinear behavior of the beams and columns. Soil properties were defined based on shear wave velocity according to categorized site classes defined in ASCE-7. The finite element model of the soil was made using isoparametric four-noded quadrilateral elements and the nonlinear dynamic responses of the combined system of soil and structure were calculated in the OpenSees. The analysis results indicate that the soil-structure interaction plays an important role in the seismic performance and retrofit of a structure with a soft-first story. It was observed that column steel jacketing was effective in the retrofit of the model structure on a fixed base, whereas stronger retrofit measures such as steel bracing were needed when soil-structure interaction was considered.

RC 기둥 보강을 위한 새로운 강판 보강기법 및 수정 연속체 모델 (A new steel jacketing method for RC columns and a modified constitutive model of jacketed concrete)

  • 태기호;최은수
    • 한국강구조학회 논문집
    • /
    • 제20권5호
    • /
    • pp.675-681
    • /
    • 2008
  • 본 연구에서는 강자켓을 이용하여 RC 기둥을 보강하는 기법으로 분리되지 않은 스테인리스-강자켓으로 보강된 콘크리트 공시체를 제작하여 횡방향 구속응력을 적용시켜 보강 하는 방법을 제안하였다. 제시된 기법의 성능을 평가하기 위해 1.0, 1.5 및 2.0 mm 두께로 제작된 강판을 변수로 하여 3개의 무보강과 9개의 보강 콘크리트 공시체를 제작하였다. 횡방향 구속응력 도입을 위해 클램프가 사용되었으며 보강된 시 편과 보강되지 않은 시편의 압축실험의 결과가 비교 분석 되었다. 실험결과 보강 강판의 두께가 증가할 수 록 압축강도가 증가했으며, 강자켓과 콘크리트는 복합거동을 하지 않으며, 실린더 중앙부가 팽창되는 것을 확인할 수 있었다. 마지막으로 실험 데이터로부터 얻은 콘크리트 공시체의 응력-변형률을 Li의 연속체 모델로 재현하여 비교 분석하였다. Li의 제안모델은 콘크리트 공시체의 항복 후의 거동에서는 오차가 커 적용이 어려움에 착안하여 수정된 Li 모델을 제안하였다. 수정된 Li 모델은 Li 모델에서 항복 후 영역의 n 값을 수정하여 얻어졌으며, 이 모델은 콘크리트의 항복 전 그리고 항복 후에도 실험값과 유사하게 재현됨을 알 수 있었다. 이로써 Li 모델의 n 값을 적절히 조절하면 실험값을 재현하는데 긍정적으로 쓰일 것으로 판단된다.

외부압력을 이용한 강판보강 콘크리트 시편의 거동분석 (A new steel jacket for concrete cylinders by using external pressure)

  • 조성철;최은수;박대효;조백순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.511-512
    • /
    • 2009
  • 본 연구는 그라우트가 필요 없는 구속력을 활용한 강판 보강 기법을 개발하고 보강기법 및 기존 연구에 대한 조사를 실시하였다. 이를 바탕으로 연구를 위해 제작한 시편들의 시험결과와 비교함으로써 거동차이를 분석하였다.

  • PDF

콘크리트 교량의 손상도 곡선 개발 (Development of Fragility Curves of Concrete Bridges)

  • 김상훈;김두희;서형렬;김종인
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.319-325
    • /
    • 2003
  • The fragility curves of seismic retrofitted bridges by steel jacketing of bridge columns and restrainers at expansion joints after the 1994 Northridge earthquake are developed. Fragility curves are represented by lognormal distribution functions with two parameters(fragility parameters consisting of median and log-standard deviation) and developed as a function of peak ground acceleration (PGA). Two parameters in the lognormal distribution are estimated by the maximum likelihood method. The sixty ground acceleration time histories for Los Angeles area developed for FEMA SAC project are used for the dynamic analysis of the bridges and a computer code is developed to calculate hysterestic parameters of bridge columns before and after steel jacketing. The effect of retrofit is expressed in terms of the increase of the median value of the fragility curve for the retrofitted bridge from that of the bridge before retrofit. The comparison of fragility curves of the bridges before and after column retrofit demonstrates that the improvement of the bridges with steel jacketing on the seismic performance is excellent for the damage states defined in this study. The comparison of fragility curves of the bridges before and after restrainers at expansion joints also shows the improvement in the seismic performance of restrained bridges for the severe damage states.

  • PDF

Seismic performance comparison of existing public facilities strengthened with RC jacketing and steel bracing

  • Zu Irfan;Abdullah Abdullah;Azmeri Azmeri;Moch. Afiffuddin;Rifqi Irvansyah
    • Earthquakes and Structures
    • /
    • 제25권1호
    • /
    • pp.43-56
    • /
    • 2023
  • Banda Aceh is one of the areas that sustains the most damage during a natural disaster because it contains so many houses, office buildings, public facilities, and schools. Public structures in coastal areas are highly susceptible to earthquakes, resulting in high casualties and property damage. Several public structures were reconstructed during the reconstruction and rehabilitation period. Because this building is located in an area with a high risk of earthquakes, its capacity must be analyzed initially. Additionally, history indicates that Aceh Province has been struck by numerous earthquakes, including the largest ever recorded in 1983 and the most recent earthquake with a magnitude of 9.3 SR on December 26, 2004. The city of Banda Aceh was devastated by this earthquake, which was followed by a tsunami. The possibility of a large earthquake in Banda Aceh City necessitates that the structures constructed there be resistant to seismic risk. This study's objective was to evaluate the seismic performance of the existing building by applying the method of strengthening the structure in the form of jacketing columns and the addition of steel bracing in order to estimate the performance of the structure using multiple ground motions. Therefore, several public buildings must be analyzed to determine the optimal seismic retrofitting technique.

Strengthening of isolated square footings using passive wrapping systems

  • Lu, Xingji;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • 제27권1호
    • /
    • pp.41-54
    • /
    • 2021
  • This paper introduced three new strengthening systems for isolated footings: BFRP wrapping system, CFRP wrapping system, and steel jacketing system. The proposed systems are more practical than the current traditional methods, which involves installing many dowel bars and splicing reinforcing steels to join new and old concrete segments. In the proposed three new systems, BFRP wraps, CFRP wraps, or steel jackets are installed on the exterior surface of the enlarged footing, with construction adhesive or a few steel dowels being applied to the contact surfaces. To investigate the effectiveness of three systems, forty-four models were constructed in ABAQUS, with different parameters being considered. All footings investigated failed in punching shear, including original and retrofitted footings. According to FEA results and parametric studies, the three strengthening systems were capable of improving the punching shear resistance of footings. By introducing a new factor η, the punching shear equation in Eurocode 2 was modified to predict the punching shear resistances of the strengthened footings. A linear formula was developed to present the relationship between the new factor η and the investigated parameters.

Behavior of steel-concrete jacketed corrosion-damaged RC columns subjected to eccentric load

  • Hu, Jiyue;Liang, Hongjun;Lu, Yiyan
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.689-701
    • /
    • 2018
  • Corrosion of steel reinforcement is a principal cause of deterioration of RC columns. Making these corrosion-damaged columns conform to new safety regulations and functions is a tremendous technological challenge. This study presented an experimental investigation on steel-concrete jacketed corrosion-damaged RC columns. The influences of steel jacket thickness and concrete strength on the enhancement performance of the strengthened specimens were investigated. The results showed that the use of steel-concrete jacketing is efficient since the stub strengthened columns behaved in a more ductile manner. Moreover, the ultimate strength of the corrosion-damaged RC columns is increased by an average of 5.3 times, and the ductility is also significantly improved by the strengthening method. The bearing capacity of the strengthening columns increases with the steel tube thickness increasing, and the strengthening concrete strength has a positive impact on both bearing capacity, whereas a negative influence on the ductility. Subsequently, a numerical model was developed to predict the behavior of the retrofitted columns. The model takes into account corrosion-damage of steel rebar and confining enhancement supplied by the steel tube. Comparative results with the experimental results indicated that the developed numerical model is an effective simulation. Based on extensive verified numerical studies, a design equation was proposed and found to predict well the ultimate eccentric strength of the strengthened columns.