• 제목/요약/키워드: Steel frame structure

검색결과 564건 처리시간 0.025초

1/4축소 철골구조물을 이용한 건물 기초분리장치의 진동대실험 (Shaking Table Tests of a 1/4-Scaled Steel Frame with Base Isolators)

  • 송영훈;김진구
    • 한국지진공학회논문집
    • /
    • 제1권2호
    • /
    • pp.39-48
    • /
    • 1997
  • 지진에 의한 진동이 건물에 미치는 영향을 최소화 하기 위하여 강철 스프링에 천연고무 및 합성고무를 피복 성형한 새로운 형태의 기초분리장치를 개발하고 물성실험을 실시하였으며 모형구조물에 부착하여 진동대실험을 수행하였다. 사용된 모델은 1/4로 축소된 1경간 3층의 철골구조물로 지진 진동을 사용하여 기초분리장치의 수평, 수직방향 안정서와 제진효과를 검증하였다. 얻어진 데이터를 분석한 결과 실험에 사용된 모든 종류의 방진베어링이 지진진동에 의한 가속도를 줄이는데 효과적인 것으로 나타났다.

  • PDF

Progressive collapse analysis of steel building considering effects of infill panels

  • Zoghi, Mohammad Abbasi;Mirtaheria, Masoud
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.59-82
    • /
    • 2016
  • Simplifier assumptions which are used in numerical studies of progressive collapse phenomenon in structures indicate inconsistency between the numerical and experimental full-scale results. Neglecting the effects of infill panels and two-dimensional simulation are some of these assumptions. In this study, an existing seismically code-designed steel building is analyzed with alternate path method (AP) to assess its resistance against progressive collapse. In the AP method, the critical columns be removed immediately and stability of the remaining structure is investigated. Analytical macro-model based on the equivalent strut approach is used to simulate the effective infill panels. The 3-dimentional nonlinear dynamic analysis results show that modeling the slabs and infill panels can increase catenary actions and stability of the structure to resist progressive collapse even if more than one column removed. Finally, a formula is proposed to determine potential of collapse of the structure based on the quantity and quality of the produced plastic hinges in the connections.

Structural Design of Mid-Story SI Tall-building with RC Frame Placed on Steel Structure

  • Isobe, Tomonobu;Aono, Hideshi
    • 국제초고층학회논문집
    • /
    • 제10권3호
    • /
    • pp.173-178
    • /
    • 2021
  • In this paper we introduce Shinagawa HEART, located in Shinagawa district, Tokyo. It is a mixed-use building with residences on the upper floors, offices on the lower floors, and commercial uses on the first and second floors, and is intended to meet the various needs of a building on the border between residential and commercial areas. The upper floors of the building are made of reinforced concrete, while the middle and lower floors are made of steel with CFT columns. First, an overview of the structural plan of the building is presented. Next, the adoption of the middle layer seismic isolation and the switch between the lower steel structure and the upper reinforced concrete structure, which are the features of this building, are explained. Finally, the construction method adopted to achieve the design performance is explained.

Mitigation of progressive collapse in steel structures using a new passive connection

  • Mirtaheri, Masoud;Emami, Fereshteh;Zoghi, Mohammad A.;Salkhordeh, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.381-394
    • /
    • 2019
  • If an alternative path would not be considered for redistribution of loads, local failure in structures will be followed by a progressive collapse. When a vertical load-bearing element of a steel structure fails, the beams connected to it will lose their support. Accordingly, an increase in span's length adds to the internal forces in beams. The mentioned increasing load in beams leads to amplifying the moments there, and likewise in their corresponding connections. Since it is not possible to reinforce all the elements of the structure against this phenomenon, it seems rational to use other technics like specified strengthened connections. In this study, a novel connection is suggested to handle the stated phenomenon which is introduced as a passive connection. This connection enables the structure to tolerate the added loads after failing of the vertical element. To that end, two experimental models were constructed and thereafter tested in half-scale, one-story, double-bay, and bolted connections in three-dimensional spaces. This experimental study has been conducted to compare the ductility and strength of a frame that has ordinary rigid connections with a frame containing a novel passive connection. At last, parametric studies have been implemented to optimize the dimensions of the passive connection. Results show that the load-bearing capacity of the frame increased up to 75 percent. Also, a significant decrease in the displacement of the node wherein the column is removed was observed compared to the ordinary moment resisting frame with the same loads.

Structural identification of a steel frame from dynamic test-data

  • Morassi, A.
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.237-258
    • /
    • 2001
  • Structural identification via modal analysis in structural mechanics is gaining popularity in recent years, despite conceptual difficulties connected with its use. This paper is devoted to illustrate both the capabilities and the indeterminacy characterizing structural identification problems even in quite simple instances, as well as the cautions that should be accordingly adopted. In particular, we discuss an application of an identification technique of variational type, based on the measurement of eigenfrequencies and mode shapes, to a steel frame with friction joints under various assembling conditions. Experience has suggested, so as to restrict the indeterminacy frequently affecting identification issues, having resort to all the a priori acknowledged information on the system, to the symmetry and presence of structural elements with equal stiffness, to mention one example, and mindfully selecting the parameters to be identified. In addition, considering that the identification techniques have a local character and correspond to the updating of a preliminary model of the structure, it is important that the analytical model on the first attempt should be adequately accurate. Secondly, it has proved determinant to cross the results of the dynamic identification with tests of other typology, for instance, static tests, so as to fully understand the structural behavior and avoid the indeterminacy due to the nonuniqueness of the inverse problem.

Seismic performance of concrete frame structures reinforced with superelastic shape memory alloys

  • Alam, M. Shahria;Nehdi, Moncef;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • 제5권5호
    • /
    • pp.565-585
    • /
    • 2009
  • Superelastic Shape Memory Alloys (SMAs) are gaining acceptance for use as reinforcing bars in concrete structures. The seismic behaviour of concrete frames reinforced with SMAs is being assessed in this study. Two eight-storey concrete frames, one of which is reinforced with regular steel and the other with SMAs at the plastic hinge regions of beams and regular steel elsewhere, are designed and analyzed using 10 different ground motion records. Both frames are located in the highly seismic region of Western Canada and are designed and detailed according to current seismic design standards. The validation of a finite element (FE) program that was conducted previously at the element level is extended to the structure level in this paper using the results of a shake table test of a three-storey moment resisting steel RC frame. The ten accelerograms that are chosen for analyzing the designed RC frames are scaled based on the spectral ordinate at the fundamental periods of the frames. The behaviour of both frames under scaled seismic excitations is compared in terms of maximum inter-storey drift, top-storey drift, inter-storey residual drift, and residual top-storey drift. The results show that SMA-RC frames are able to recover most of its post-yield deformation, even after a strong earthquake.

Effective buckling length of steel column members based on elastic/inelastic system buckling analyses

  • Kyung, Yong-Soo;Kim, Nam-Il;Kim, Ho-Kyung;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.651-672
    • /
    • 2007
  • This study presents an improved method that uses the elastic and inelastic system buckling analyses for determining the K-factors of steel column members. The inelastic system buckling analysis is based on the tangent modulus theory for a single column and the application is extended to the frame structural system. The tangent modulus of an inelastic column is first derived as a function of nominal compressive stress from the column strength curve given in the design codes. The tangential stiffness matrix of a beam-column element is then formulated by using the so-called stability function or Hermitian interpolation functions. Two inelastic system buckling analysis procedures are newly proposed by utilizing nonlinear eigenvalue analysis algorithms. Finally, a practical method for determining the K-factors of individual members in a steel frame structure is proposed based on the inelastic and/or elastic system buckling analyses. The K-factors according to the proposed procedure are calculated for numerical examples and compared with other results in available references.

알루미늄 초경량 차체의 구조강성 및 안전도향상에 관한 연구 (A Study on The Structure and Safety of Aluminum Intensive Vehicle)

  • 김진국;김상범;김헌영;허승진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.363-369
    • /
    • 2000
  • Due to environmental problem for reduction in fuel consumption, vehicle emission and etc., many automotive makers are trying to reduce the weight of the vehicle. The most effective way to reduce the weight of vehicle is to use lighter materials, aluminum, plastics. Aluminum Space Frame has many advantages in weight reduction, body stiffness, ease of model change and so on. So, most of automotive manufacturers are attempting to develope Aluminum Space Frame body. For these reasons, we have developed Aluminum Intensive Vehicle based on steel monocoque body with Hyundai Motor Company. We achieved about 30% weight reduction, the stiffness of our model was higher than that of conventional steel monocoque body. In this paper, with optimization using FEM analysis, we could get more weight reduction and body stiffness increase. In the long run, we analyzed by means of simulation using PAM-CRASH to evaluate crush and crash characteristic of Aluminum Intensive Vehicle in comparison to steel monocoque automotive.

  • PDF

Optimum design of steel frame structures considering construction cost and seismic damage

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.1-26
    • /
    • 2015
  • Minimizing construction cost and reducing seismic damage are two conflicting objectives in the design of any new structure. In the present work, we try to develop a framework in order to solve the optimum performance-based design problem considering the construction cost and the seismic damage of steel moment-frame structures. The Park-Ang damage index is selected as the seismic damage measure because it is one of the most realistic measures of structural damage. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. To improve the time efficiency of the proposed framework, three simplifying strategies are adopted: first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication; second, fitness approximation decreasing the number of fitness function evaluations; third, wavelet decomposition of earthquake record decreasing the number of acceleration points involved in time-history loading. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency's (FEMA) recommended seismic design specifications. The results from numerical application of the proposed framework demonstrate the efficiency of the framework in solving the present multi-objective optimization problem.

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.