• 제목/요약/키워드: Steel for Construction

검색결과 3,425건 처리시간 0.033초

ENVIRONMENTAL FATIGUE OF METALLIC MATERIALS IN NUCLEAR POWER PLANTS - A REVIEW OF KOREAN TEST PROGRAMS

  • Jang, Changheui;Jang, Hun;Hong, Jong-Dae;Cho, Hyunchul;Kim, Tae Soon;Lee, Jae-Gon
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.929-940
    • /
    • 2013
  • Environmental fatigue of the metallic components in light water reactors has been the subject of extensive research and regulatory interest in Korea and abroad. Especially, it was one of the key domestic issues for the license renewal of operating reactors and licensing of advanced reactors during the early 2000s. To deal with the environmental fatigue issue domestically, a systematic test program has been initiated and is still underway. The materials tested were SA508 Gr.1a low alloy steels, 316LN stainless steels, cast stainless steels, and an Alloy 690 and 52M weld. Through tests and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for those alloys. In addition, the effects of temperature, dissolved oxygen level, and dissolved hydrogen level on low cycle fatigue behaviors have been investigated. In this paper, the test results and key analysis results are briefly summarized. Finally, an on-going test program for hot-bending of 347 stainless steel is introduced.

지하철 구조물의 온도균열제어를 위한 시공조건별 해석적 영향 분석 (Parametric Analysis on Construction Conditions to Control Thermal Cracks in Subway Concrete Structure)

  • 김연태;김상철
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.312-318
    • /
    • 2004
  • The wall in a subway structure is easily subject to crack occurrence since its expansion and shrinkage associated with hydration heat reaction is constrained by the slab. The greater problem is that the crack in the wall may be developed to pass through thickness and eventually deteriorate the structure due to rusting of reinforced steel. Thus, this study aims at controlling thermal cracks as much as possible and determining an optimized size of concrete placement through hydration heat analysis. For this study, effects of placement height, length, temperature and types of cement on the thermal cracks were evaluated by temperature rise, thermal stress and crack index. As results of parametric study, it was found that placement height and length do not have an effect on the temperature rise but have significant one on thermal stress which relates to direct possibility of thermal crack occurrence. This means that proper selection of size balancing internal constraint with external one is much more important than reducing the placement height and length simply. In order to prevent from thermal cracks most effectively, in addition, it was noted to reduce placement temperature and to use the cement blended with mineral admixture.

프리플렉스 부재를 이용한 기존 철근콘크리트 지중박스구조물 우각부에 대한 내진보강공법 사례연구 (A Case Study on Earthquake Resistant Reinforcement Method for the Corner of Existing Underground R.C Box Structures using Pre-flexed Member System)

  • 정지승;김진구;이진혁
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.68-74
    • /
    • 2016
  • This paper presents a new strengthening method of underground box structures against seismic loads for anti-seismic capacity improvement. A threaded steel member with pressure devices(so called 'Pre-flexed member system') is used to improve seismic capacity of the RC box structure. The pre-flexed member system is fixed the corner of opening after chemical anchor was installed by drilling hole on the box structure. The structural performance was evaluated analytically. Two bracing types of strengthening methods were used; conventional bracing method and I-bracing pressure system. For the performance evaluation, seismic analyses were performed on moment and shear resisting structures with and without strength member system. Numerical results confirmed that the proposed pre-flexed member system can enhance the seismic capacity of the underground RC box structures.

Development of non-destructive testing method to evaluate the bond quality of reinforced concrete beam

  • Saleem, Muhammad;Almakhayitah, Abdulmalik Mohammed
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.313-323
    • /
    • 2020
  • Non-destructive tests are commonly used in construction industry to access the quality and strength of concrete. However, till date there is no non-destructive testing method that can be adopted to evaluate the bond condition of reinforced concrete beams. In this regard, the presented research work details the use of ultra-sonic pulse velocity test method to evaluate the bond condition of reinforced concrete beam. A detailed experimental research was conducted by testing four identical reinforced concrete beam samples. The samples were loaded in equal increments till failure and ultra-sonic pulse velocity readings were recorded along the length of the beam element. It was observed from experimentation that as the cracks developed in the sample, the ultra-sonic wave velocity reduced for the same path length. This reduction in wave velocity was used to identify the initiation, development and propagation of internal micro-cracks along the length of reinforcement. Using the developed experimental methodology, researchers were able to identify weak spots in bond along the length of the specimen. The proposed method can be adopted by engineers to access the quality of bond for steel reinforcement in beam members. This allows engineers to carryout localized repairs thereby resulting in reduction of time, cost and labor needed for strengthening. Furthermore, the methodology to apply the proposed technique in real-world along with various challenges associated with its application have also been highlighted.

샌드위치패널구조 기축건축물의 플래시오버 지연 공법 연구 (A Study on the Flash Over Delay Method for a Previously Constructed Building with Sandwich Panel Structure)

  • 김도현;조남욱
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.71-80
    • /
    • 2017
  • The purpose of this study is to applied reinforcement method at the joint part of the sandwich panel. Becasue the joint part of the sandwich panel has a disadvantage that flame spreads fast inside steel plates in the event of fire, leading to a big fire rapidly. In this study, the combustion performance was measured through KS F ISO 13784-1 "Reaction-to-fire tests for sandwich panel building systems" according to the application of reinforcement method to prevent flame from being brought into the internal joint of the sandwich panel. For the reinforcement inside the panel, the tape produced using expanded graphite-based heat-expandable glass fiber was attached. As a result, it was confirmed that the prevention of flame from being brought into the internal joint could delay the flash over time and the collapse of the test specimen.

PVC and POM gripping mechanisms for tension testing of FRP bars

  • Basaran, Bogachan;Yaka, Harun;Kalkan, Ilker
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.75-87
    • /
    • 2021
  • The present study pertains to the introduction of two new types of grip adaptor for universal testing machines, namely Polyvinyl Chloride (PVC) and Polyoxymethylene (POM) grip adaptors, and their application to tension testing of FRP bars with different fiber and surface finish types. The tabs are connected to the FRP bar sample with the help of mechanical anchors, i.e. bolts. These new adaptors offer vital superiorities over the existing end tab designs (anchors with filling material or mechanical anchorage), including the reduction in the time and labor for production, reusability and the mild nature, i.e. low hardness of the tab material, which retards and even prevents peeling and crushing in the gripping regions of an FRP sample. The methods were successfully applied to FRP bars with different types of fiber (CFRP, GFRP and BFRP) and different types of surface texture (ribbed, wrapped, sand-coated and wound). The test results indicated that the both types of end caps prevented slip of the bar, crushing and peeling in the gripping zone. The mechanical properties from the material tests with the new caps were in perfect agreement with the ones from the material tests with steel tubular caps.

Manufacturing properties of γ-dicalcium silicate with synthetic method

  • Chen, Zheng-xin;Lee, Han-seung;Cho, Hyeong-Kyu
    • Journal of Ceramic Processing Research
    • /
    • 제20권spc1호
    • /
    • pp.109-112
    • /
    • 2019
  • γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixed capacity and the low CO2 emission production process, γ-C2S has attracted more and more attention of researchers. For the further development of application of γ-C2S in building construction industry. In this study, we aim to investigate the method for synthesizing high purity of γ-C2S. The influence of different raw materials and calcination temperatures on the purity of γ-C2S was also evaluated. Several Ca bearing materials were selected as the calcium source, the materials which' s main component is SiO2 were used as the silicon source. Raw materials were mixed and were calcined under different temperatures. The results reveal that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. And for the practical application, a relatively economic synthesis method using natural mineral materials- limestone and silica sand as raw materials was developed, by this method, the purity of the synthetic γ-C2S was 77.6%.

Experimental and numerical studies on flexural behavior of high strength concrete beams containing waste glass

  • Haido, James H.;Zainalabdeen, Marwa A.;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • 제11권3호
    • /
    • pp.239-253
    • /
    • 2021
  • The behavior of concrete containing waste glass as a replacement of cement or aggregate was studied previously in the most of researches, but the present investigation focuses on the recycling of waste glass powder as a substitute for silica fume in high strength concrete (HSC). This endeavor deals with the efficiency of using waste glass powder, as an alternative for silica fume, in the flexural capacity of HSC beam. Thirteen members with dimensions of 0.3 m width, 0.15 m depth and 0.9 m span length were utilized in this work. A comparison study was performed considering HSC members and hybrid beams fabricated by HSC and conventional normal concrete (CC). In addition to the experiments on the influence of glass powder on flexural behavior, numerical analysis was implemented using nonlinear finite element approach to simulate the structural performance of the beams. Same constitutive relationships were selected to model the behavior of HSC with waste glass powder or silica fume to show the matching between the modeling outputs for beams made with these powders. The results showed that the loading capacity and ductility index of the HSC beams with waste glass powder demonstrated enhancing ultimate load and ductility compared with those of HSC specimens with silica fume. The study deduced that the recycled waste glass powder is a good alternative to the pozzolanic powder of silica fume.

Tailoring fabric geometry of plain-woven composites for simultaneously enhancing stiffness and thermal properties

  • Zhou, Xiao-Yi;Wang, Neng-Wei;Xiong, Wen;Ruan, Xin;Zhang, Shao-Jin
    • Steel and Composite Structures
    • /
    • 제42권4호
    • /
    • pp.489-499
    • /
    • 2022
  • This paper proposes a numerical optimization method to design the mesoscale architecture of textile composite for simultaneously enhancing mechanical and thermal properties, which compete with each other making it difficult to design intuitively. The base cell of the periodic warp and fill yarn system is served as the design space, and optimal fibre yarn geometries are found by solving the optimization problem through the proposed method. With the help of homogenization method, analytical formulae for the effective material properties as functions of the geometry parameters of plain-woven textile composites were derived, and they are used to form the inverse homogenization method to establish the design problem. These modules are then put together to form a multiobjective optimization problem, which is formulated in such a way that the optimal design depends on the weight factors predetermined by the user based on the stiffness and thermal terms in the objective function. Numerical examples illustrate that the developed method can achieve reasonable designs in terms of fibre yarn paths and geometries.

Utilising artificial neural networks for prediction of properties of geopolymer concrete

  • Omar A. Shamayleh;Harry Far
    • Computers and Concrete
    • /
    • 제31권4호
    • /
    • pp.327-335
    • /
    • 2023
  • The most popular building material, concrete, is intrinsically linked to the advancement of humanity. Due to the ever-increasing complexity of cementitious systems, concrete formulation for desired qualities remains a difficult undertaking despite conceptual and methodological advancement in the field of concrete science. Recognising the significant pollution caused by the traditional cement industry, construction of civil engineering structures has been carried out successfully using Geopolymer Concrete (GPC), also known as High Performance Concrete (HPC). These are concretes formed by the reaction of inorganic materials with a high content of Silicon and Aluminium (Pozzolans) with alkalis to achieve cementitious properties. These supplementary cementitious materials include Ground Granulated Blast Furnace Slag (GGBFS), a waste material generated in the steel manufacturing industry; Fly Ash, which is a fine waste product produced by coal-fired power stations and Silica Fume, a by-product of producing silicon metal or ferrosilicon alloys. This result demonstrated that GPC/HPC can be utilised as a substitute for traditional Portland cement-based concrete, resulting in improvements in concrete properties in addition to environmental and economic benefits. This study explores utilising experimental data to train artificial neural networks, which are then used to determine the effect of supplementary cementitious material replacement, namely fly ash, Ground Granulated Blast Furnace Slag (GGBFS) and silica fume, on the compressive strength, tensile strength, and modulus of elasticity of concrete and to predict these values accordingly.