• 제목/요약/키워드: Steel for Construction

검색결과 3,425건 처리시간 0.034초

Behavior of three-tube buckling-restrained brace with circumference pre-stress in core tube

  • Li, Yang;Qu, Haiyan;Xiao, Shaowen;Wang, Peijun;You, Yang;Hu, Shuqing
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.81-96
    • /
    • 2019
  • The behavior of a new Three-Tube Buckling-Restrained Brace (TTBRB) with circumference pre-stress (${\sigma}_{{\theta},pre}$) in core tube are investigated through a verified finite element model. The TTBRB is composed of one core tube and two restraining tubes. The core tube is in the middle to provide the axial stiffness, to carry the axial load and to dissipate the earthquake energy. The two restraining tubes are at inside and outside of the core tube, respectively, to restrain the global and local buckling of the core tube. Based on the yield criteria of fringe fiber, a design method for restraining tubes is proposed. The applicability of the proposed design equations are verified by TTBRBs with different radius-thickness ratios, with different gap widths between core tube and restraining tubs, and with different levels of ${\sigma}_{{\theta},pre}$. The outer and inner tubes will restrain the deformation of the core tube in radius direction, which causes circumference stress (${\sigma}_{\theta}$) in the core tube. Together with the ${\sigma}_{{\theta},pre}$ in the core tube that is applied through interference fit of the three tubes, the yield strength of the core tube in the axial direction is improved from 160 MPa to 235 MPa. Effects of gap width between the core tube and restraining tubes, and ${\sigma}_{{\theta},pre}$ on hysteretic behavior of TTBRBs are presented. Analysis results showed that the gap width and the ${\sigma}_{{\theta},pre}$ can significantly affect the hysteretic behavior of a TTBRB.

전단연결재를 적용한 무기계 경량기포콘크리트(ALC) 샌드위치 외벽 패널의 단열성능에 미치는 영향요인 분석 (An Analysis of Factors Influencing Insulation Performance of Inorganic Autoclaved Lightweight Concrete Sandwich Wall Panels Using Shear Connectors)

  • 강동화;강동화;신동현;김형준
    • 대한건축학회논문집:구조계
    • /
    • 제34권1호
    • /
    • pp.79-87
    • /
    • 2018
  • The purpose of this study was to analyze factors influencing insulation performance of inorganic Autoclaved Lightweight Concrete(ALC) sandwich wall panels with the application of shear connectors. To analyze the effect of shear connectors on the thermal performance of sandwich wall panels, heat transfer analysis was conducted by using the three-dimensional heat transfer simulation software. Four types of shear connector such as Pin, Clip, Grid, and Truss were selected for insulation performance analysis. Thermal bridge coefficient was calculated by varying typical panel thickness and shear connector thickness and materials such as steel, aluminum, and stainless steel. The results showed that Grid and Truss type widely distributed along the section of sandwich wall panel had a great influence on the thermal bridge coefficient by changing the influence factors. Based on the results of thermal and structural performance analysis, effective heat transmission coefficient of the sandwich wall panel satisfying the passive house insulation criteria was calculated. As a result, it was found that heat transmission coefficient was increased from $0.132W/m^2{\cdot}K$ to $0.141{\sim}0.306W/m^2{\cdot}K$ depending on the shear connector types and materials. In the majority of cases, the passive house insulation criteria was not satisfied after using shear connectors. The results of this study were likely to vary according to how influence factors were set, but it is important to apply the methods that reduce the thermal bridge when there would be a possibility of greatly affecting the insulation performance.

대형 언어 모델 기반 신경망을 활용한 강구조물 부재 중량비 예측 (Predicting Steel Structure Product Weight Ratios using Large Language Model-Based Neural Networks)

  • 박종혁;유상현;한수희;김경준
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.119-126
    • /
    • 2024
  • 건물 정보 모델(BIM: Building Information Model)은 관련 기업의 개별화된 프로젝트와 학습 데이터양 부족으로 인해 인공지능(AI: Artificial Intelligence) 기반 BIM 애플리케이션 개발이 쉽지 않다. 본 연구에서는 데이터가 제한적인 상황에서 BIM의 강구조물 부재 중량비를 예측하기 위해 사전 학습이 된 대형 언어 모델을 기반으로 신경망을 학습하는 방법을 제시하고 실험하였다. 제안된 모델은 대형 언어 모델을 활용하여 BIM에 내재하는 데이터 부족 문제를 극복할 수 있어 데이터의 양이 부족한 상황에서도 성공적인 학습이 가능하며 대형 언어 모델과 연계된 신경망을 활용하여 자연어와 더불어 숫자 데이터까지 처리할 수 있다. 실험 결과는 제안된 대형 언어 모델 기반 신경망이 기존 소형 언어 모델 기반보다 높은 정확도를 보였다. 이를 통해, 대형 언어 모델이 BIM에 효과적으로 적용될 수 있음이 확인되었으며, 향후 건물 사고 예방 및 건설 비용의 효율적인 관리가 기대된다.

조선 적용을 위한 문자마킹 자동용접장치 개발 (Development of Marking Robot by using Arc Welding for Shipbuilding)

  • 박철성;박진휘;유영수;이정수
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.3-3
    • /
    • 2009
  • 선박의 건조과정에서 필수적으로 선체 외판에는 선박의 안전과 운항 및 정비 등에 필요한 정보를 나타내기 위해 다양한 종류의 마크 및 문자가 마킹되어진다. 하지만, 단순한 도장 작업만으로는 해상과 같은 부식 환경에서 마크 및 문자가 쉽게 지워지거나 손상되기 때문에 마크 및 문자를 용접 비드(welding bead)로 표시하거나 미리 절단된 강판(steel plate)을 수동으로 용접한 뒤 도장을 함으로써 마크 및 문자의 손상을 방지하고 있다. 이러한 문자마킹작업을 하기 위해서는 작업자가 수작업으로 기준선과 마크 및 문자의 위치를 먹줄 등을 이용하여 마킹을 하고, 해당 마크 및 문자의 템플렛(template)을 이용하여 펀칭을 실시한 후 수동으로 용접을 실시한다. 하지만, 수작업을 통한 선체외판 문자마킹 작업은 작업자의 기량에 따라 품질이 상이하여 품질 저하의 원인이 된다. 또한 대조립 및 탑재 단계에서 문자 마킹 작업시 수직자세의 용접을 요구함으로써 작업자가 안전사고에 노출되어 있으며, 선박의 각 단계별 주요 공정보다 작업시간이 길어져 전체 선박 건조공정을 지연시키는 문제점 등을 야기시킬 수 있다. 이러한 문제점들을 해결하기 위해 조선업계에서는 선체 외판의 마크 및 문자를 자동으로 용접할 수 있는 장치를 개발하기 위해 노력해왔으며, 몇몇 개발 사례가 보고되고 있다. 하지만, 그 실효성 부분에서는 아직까지 해결하지 못한 문제점들로 인해 현장 적용에는 어려움을 보이고 있다. 본 연구에서는 선박외판 문자 자동용접장치의 기능성뿐만 아니라 현업 적용성을 가장 우선적으로 고려하여 문자마킹장치(Marking Robot for Shipbuilding) 개발을 진행하였다. 우선, 적절한 용접 재료를 선정하기 위해서 솔리드 와이어(Solid Wire)와 플럭스 코어드 와이어(Flux Cored Wire)에 대한 비드온 용접(Bead-On Welding)을 아래보기자세와 수직자세에 대해서 실시하여 적절한 용접 조건을 설정하였다. 본 연구에서 개발된 문자마킹 자동용접장치는 3축으로 구성되어 있으며 각 축들을 분리할 수 있도록 개발하여 이동성을 향상시켰으며, 작업면과 용접토치간의 거리를 일정하게 유지시킬 수 있도록 용접전류 센서(Welding Current Sensor)를 이용하여 토치 높이(Wire Extension)를 제어함으로써 균일한 품질의 용접비드를 얻을 수 있었다. 또한 문자마킹 자동용접장치는 본체 구동부와 제어부(Touch Screen)가 쉽게 분리되고 장착이 가능한 구조로 개발되었으며, 용접시 각 용접자세별로 용접전압, 전류 그리고 용접속도 설정이 가능하여 아래보기 자세뿐만 아니라 어떠한 자세에서도 같은 모양의 비드형상을 가지는 문자마킹용접이 가능하도록 개발하였으며, 이는 실험과 현장적용을 통해 검증하였다.

  • PDF

건축물내 급수설비의 수질변화 특성과 영향력 평가 (Assessment of Variable Characteristics in Water Quality of the Supply Systems in the Building)

  • 이현동;황재운;배철호;김상진
    • 한국물환경학회지
    • /
    • 제20권4호
    • /
    • pp.313-320
    • /
    • 2004
  • In this study, variable characteristics of drinking water and the influences on underground water reservoirs, rooftop water tanks, and service water pipes in the building were assessed. The influence of underground water reservoir material and water capacity on water quality also were assessed. The results are the following as; First of all, the drinking water passing through underground water reservoirs or service water pipes in the building, averagely metal component concentration more increased from percent of 41.3 to percent of 74.2 totally than other items of water quality. On the other hand, both residual chlorine and total solid highly decreased 65.6 percent and 35.3 percent, respectively. Therefore, it was thought that water quality could be getting worse for microorganism re-growth by residual chlorine reduction, and total solid also could be a cause for extraneous matters accumulated in water reservoir. Secondly, the variations on water quality of each stage for water supply system in the building were higher in water service pipes connected from rooftop water tanks to the tap than in underground water reservoirs. In addition to, among of twelve items on water quality, ten items on water quality except dissolved oxygen and residual chlorine increased. Therefore, it was thought that the influence of water service pipes connected from rooftop water tanks to the tap on water quality were higher than other stages of water supply system in the building. Thirdly, in case of materials of underground water reservoir, it was likely that the variation on water quality by stainless steel and concrete materials got some similar. In case of water capacity, the variations on water quality of underground water reservoirs over $1,000m^3$ higher than those under $1,000m^3$. That reasons was likely that the retention time(49.72 hours averagely) of underground water reservoirs over $1,000m^3$ was two times longer than it of those under $1,000m^3$(23.37 hours). Therefore, it was thought that the influence on water quality by materials were some similar, but in case of water capacity, the influence of underground water reservoirs were higher.

Static and dynamic analytical and experimental analysis of 3D reinforced concrete panels

  • Numayr, K.;Haddad, R.
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.399-406
    • /
    • 2009
  • A three-dimensional panel system, which was offered as a new method for construction in Jordan using relatively high strength modular panels for walls and ceilings, is investigated in this paper. The panel consists of two steel meshes on both sides of an expanded polystyrene core and connected together with a truss wire to provide a 3D system. The top face of the ceiling panel was pored with regular concrete mix, while the bottom face and both faces of the wall panels were cast by shotcreting (dry process). To investigate the structural performance of this system, an extensive experimental testing program for ceiling and wall panels subjected to static and dynamic loadings was conducted. The load-deflection curves were obtained for beam and shear wall elements and wall elements under transverse and axial loads, respectively. Static and dynamic analyses were conducted, and the performance of the proposed structural system was evaluated and compared with a typical three dimensional reinforced concrete frame system for buildings of the same floor areas and number of floors. Compressive strength capacity of a ceiling panel is determined for gravity loads, while flexural capacity is determined under the effect of wind and seismic loading. It was found that, the strength and serviceability requirements could be easily satisfied for buildings constructed using the three-dimensional panel system. The 3D panel system is superior to that of conventional frame system in its dynamic performance, due to its high stiffness to mass ratio.

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

Composite Wood-Concrete Structural Floor System with Horizontal Connectors

  • SaRibeiro, Ruy A.;SaRibeiro, Marilene G.
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.61-67
    • /
    • 2015
  • The concept of horizontal shear connection utilization on wood-concrete beams intends to be an alternative connection detail for composite wood-concrete decks. The volume of sawn-wood is over three times more expensive than concrete, in Brazil. In order to be competitive in the Brazilian market we need a composite deck with the least amount of wood and a simple and inexpensive connection detail. This research project uses medium to high density tropical hardwoods managed from the Brazilian Amazon region and construction steel rods. The beams studied are composed of a bottom layer of staggered wood boards and a top layer of concrete. The wood members are laterally nailed together to form a wide beam, and horizontal rebar connectors are installed before the concrete layer is applied on top. Two sets of wood-concrete layered beams with horizontal rebar connectors (6 and 8) were tested in third-point loading flexural bending. The initial results reveal medium composite efficiency for the beams tested. An improvement on the previously conceived connection detail (set with six connectors) for the composite wood-concrete structural floor system was achieved by the set with eight connectors. The new layout of the horizontal rebar connectors added higher composite efficiency for the beams tested. Further analysis with advanced rigorous numerical Finite Element Modeling is suggested to optimize the connection parameters. Composite wood-concrete decks can attend a large demand for pedestrian bridges, as well as residential and commercial slabs in the Brazilian Amazon.

ANN-Incorporated satin bowerbird optimizer for predicting uniaxial compressive strength of concrete

  • Wu, Dizi;LI, Shuhua;Moayedi, Hossein;CIFCI, Mehmet Akif;Le, Binh Nguyen
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.281-291
    • /
    • 2022
  • Surmounting complexities in analyzing the mechanical parameters of concrete entails selecting an appropriate methodology. This study integrates a novel metaheuristic technique, namely satin bowerbird optimizer (SBO) with artificial neural network (ANN) for predicting uniaxial compressive strength (UCS) of concrete. For this purpose, the created hybrid is trained and tested using a relatively large dataset collected from the published literature. Three other new algorithms, namely Henry gas solubility optimization (HGSO), sunflower optimization (SFO), and vortex search algorithm (VSA) are also used as benchmarks. After attaining a proper population size for all algorithms, the Utilizing various accuracy indicators, it was shown that the proposed ANN-SBO not only can excellently analyze the UCS behavior, but also outperforms all three benchmark hybrids (i.e., ANN-HGSO, ANN-SFO, and ANN-VSA). In the prediction phase, the correlation indices of 0.87394, 0.87936, 0.95329, and 0.95663, as well as mean absolute percentage errors of 15.9719, 15.3845, 9.4970, and 8.0629%, calculated for the ANN-HGSO, ANN-SFO, ANN-VSA, and ANN-SBO, respectively, manifested the best prediction performance for the proposed model. Also, the ANN-VSA achieved reliable results as well. In short, the ANN-SBO can be used by engineers as an efficient non-destructive method for predicting the UCS of concrete.

장방형 각형강관 가새부재 이력거동 예측을 위한 주요변수의 경험식 제안 (Empirical Equations Predicting Major Parameters for Simulating Cyclic Behavior of Rectangular HSS Braces)

  • 한상환;성민수;마동준
    • 한국지진공학회논문집
    • /
    • 제21권3호
    • /
    • pp.137-144
    • /
    • 2017
  • The cyclic behavior of braces is complex due to their asymmetric properties in tension and compression. For accurately simulating the cyclic curves of braces, it is important to predict the major parameters such as cyclic brace growth, cyclic buckling load, incidence local buckling and fracture with good precision. For a given brace, the most accurate values of these parameters can be estimated throughout experiments. However, it is almost impossible to conduct experiments whenever an analytical model has to be established for many braces in building structures due to enormous cost and time. For avoid such difficulties, empirical equations for predicting constituent parameters are proposed from regression analyses based on test results of various braces. This study focuses on rectangular hollow structural section(HSS) steel braces, which have been popularly used in construction practice owing to its sectional efficiency.