• Title/Summary/Keyword: Steel for Construction

Search Result 3,441, Processing Time 0.033 seconds

Experimental Study for the Reinforcement of District Heating Pipe (지역난방 열배관 강화를 위한 실증시험 연구)

  • Kim, Jaemin;Kim, Jooyong;Cho, Chongdu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.245-252
    • /
    • 2016
  • In this study, an alternative bend design is proposed to overcome the aging problem in piping bends. In this design, the foam pad is not included. Finite element analysis was performed based on the total pipe diameter. From this analysis, the shape of the Shear Control Ring (SCR) was determined. Temperature, stress, and other data of the proposed reinforced pipe were acquired and analyzed after the test was performed. The value of the thermal stress for the reinforced steel pipe satisfied the required standard without the foam pad based on the manufacturing of the reinforced fitting and construction site of the test. The reinforcement provided a shear strength level for the foam pad that resulted in maximum shear stress less than stress based on the original foam pad applied at the pipe bend. Additionally, an increasing factor of safety effect for the reinforced fitting application was discovered.

Characteristics of Uplift Capacity of House Pipe Foundation according to Foundation Types and Soil Conditions (기초형식 및 지반조건에 따른 하우스파이프기초의 인발저항력 특성)

  • Song, ChangSeob;Jang, UngHee;Choi, DookHo;Kim, JungChul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.117-126
    • /
    • 2020
  • The area of facility horticulture in Korea is increasing rapidly, the single-span pipe house which uses galvanized steel pipe as the main rafters occupies 78.7% of the facility area. Lightweight structures such as the single-span pipe house are vulnerable to meteorological disasters such as strong winds, economic losses of the state, local governments and farmers are continuing as construction does not meet the design standards. In order to minimize economic losses in the horticultural specialty facilities sector, the Rural Development Administration has been operating the horticultural disaster resilient standard for horticultural specialty facilities since April 2007. The only standard for the pipe connector is the disaster resilient standard, there is no standard for the uplift capacity of the house pipe foundation and the research on it is also insufficient. The purpose of this study is to investigate the characteristics of uplift capacity according to the foundation type, compaction ratio and embedded depth through soil box test. The results of the maximum uplift capacity according to the type, compaction ratio and embedded depth can be used as the basic data for the basic design of the pipe house conforming to the disaster resilient standard. Due to the limitation of soil box test, it may be different from the behavior of pipe house installed on site. In the future, the field test and the actual pipe house should be made and supplemented by comparing this result with the field test values.

Study on Reinforcement Effect of Circular RC Columns by Helical Bar Under Cyclic Lateral Load (반복 횡하중을 받는 원형 철근콘크리트 기둥의 Helical Bar 보강효과에 대한 연구)

  • Kim, Seong-Kyum;Park, Jong-Kwon;Han, Sang-Hee;Kim, Byung-Cheol;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • In this study, quasi-static according to the displacement-controlled (strain control) method tests on RC columns for seismic reinforcement performance in accordance with the provisions of the seismic design and construction before 1992 design code for highway bridges in korea. Used reinforcement that improves the performance of Inorganic Helical Bar, a kind of alloy steel, circular columns were tested outside the seismic reinforcing. In the experiment, fracture behavior, lateral load-displacement relation, ductility and energy assessment evaluation was performed through tests. The variables in experimental are section force of reinforcement, spiral reinforcement spacing, reinforcement method. Improved seismic performance and effect were confirmed through quasi-static test experiments. The results of study confirmed determination the appropriate size of reinforcement, reinforcement forces, spacing and selection of the type required, furthermore, not only mechanical reinforcement but also substitution of high-strength concrete reinforced with concrete cover improved seismic performance.

Estimation of Carbonation and Service Life of Box Culvert for Power Transmission Line (박스형 전력구의 콘크리트 탄산화에 의한 잔존수명 예측)

  • Woo, Sang Kyun;Lee, Yun;Yi, Seong Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.116-121
    • /
    • 2012
  • The construction of underground structures such as box culverts for electric power transmission is increasing more and more, and the life extension of these structures is very important. Carbonation-induced corrosion in concrete may often occur in a high carbon dioxide environment. In this study, the risk of carbonation of two concrete box culverts in an urban area was evaluated by measuring the carbonation rate and concrete cover depth. Then, the carbonation-free service life at the depth of the steel was calculated, based on in situ information, by the Monte Carlo simulation. The service life of box culvert due to carbonation was estimated over 250 years via Monte Carlo simulation.

Evaluation of Fracture Behaviours of Cementitious Composites by High-velocity Projectile Impact (고속 비상체 충격에 의한 시멘트 복합체의 파괴거동 평가)

  • Min, Ji-Young;Cho, Hyun-Woo;Lee, Jang-Hwa;Kim, Sung-Wook;Moon, Jae-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.55-62
    • /
    • 2015
  • An importance of infrastructures' protection against crash or blast loading has been an emerging issue as structures are becoming much bigger and population densities in downtown are growing up. However, there exists no such a standard to evaluate the protection performance of construction material itself. Prior to building standards for protection assessment techniques, this study performed gas-gun propelled projectile impact tests with series of contact-type monitoring systems to investigate the applicability of each sensing type. Through the impact tests, failure modes and protection performances of both normal concrete and UHPC (Ultra High Performance Concrete) reinforced by steel fibers were also evaluated. The results showed that LVDT could be applicable for the impact test among contact-type sensors and UHPC with fibers had a remarkable potential to improve protection against impact loading.

Applicability Evaluation of Precast Deck to the Maglev Guideway System : Mock-Up Construction Test (프리캐스트 바닥판의 자기부상열차 가이드웨이 시스템 적용성 평가 : 모의 시공 실험)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Oh, Hyung-Chul;Ma, Hyang-Wook;Lee, Yung-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.57-60
    • /
    • 2008
  • Maglev is a system that a train runs levitated above a rail. Therefore it is very important to maintain a constant levitation gap for achieving serviceability and ride comfort. This study is a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program in Korea, started in 2006. The aim of this study is development of rapid constructions of bridge superstructure for maglev. At present, precast deck is widely used because of its superiority to cast-in-place concrete on quality and the term of works. The research group suggested basic systems of maglev guideway with PSC-U type and trapezoidal open steel box type girder, and precast deck, cooperating with Korea Railroad Research Institute, the managing institute of the 3-1 subject. In this study, a mock-up consisted of girders, decks and rail was fabricated and test was performed for constructability, serviceability and maintenance evaluation of PSC U-type girder, precast deck, and new guide rail system.

  • PDF

The Classification of Manufacturing Work Processes to Develop Functional Work Clothes - With a Reference to the Automobile, Machine and Shipbuilding Industries -

  • Park, Ginah;Park, Hyewon;Bae, Hyunsook
    • Journal of Fashion Business
    • /
    • v.16 no.6
    • /
    • pp.21-35
    • /
    • 2012
  • In consideration of the injuries and deaths occurring at manufacturing sites due to the use of inappropriate work clothes or safety devices, this study aims to categorize manufacturing work processes to develop functional work clothes for heavy industries including the automobile, machine and shipbuilding industries in South Korea. Defining the features of the work environments and work postures of these industries provided for a categorization of the work processes which would enable the development of suitable work clothes for each work process' category. The results of the study based on a questionnaire survey are as follows: Work process category 1, including steel panel pressing and auto body assembly, final inspection (in automobile) and inspection (in machine), requires work clothes with upper body and arm mobility and performance to protect from the toxic fume factor. Work process category 2, consisting of welding (in automobile), cutting-and-forming (in machine) and attachment-and-construction (in shipbuilding), requires clothing elasticity, durability and heat and fire resistance. Work process category 3 comprising welding and grinding in the machine and shipbuilding industries, requires work clothes' tear resistance and elasticity, particularly for lateral bending mobility, and work clothes' sleeves' and pants' hemlines with sealed designs to defend against iron filing penetration, as well as incombustible and heat-resistant material performance. Finally, work process category 4, including painting in machine and shipbuilding, requires work clothes with waterproofing, air permeability, thermal performance, elasticity, durability and abrasion resistance.

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

Shear Characteristics of Elastomeric Bearing Rubber Deteriorated by Accelerated Heat Aging(2): Chloroprene Rubber (가속열 노화로 열화된 탄성받침 고무재료의 전단 특성(2): 합성고무)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.103-110
    • /
    • 2021
  • Elastomeric bearings composed of flexible rubber materials and steel reinforcement plates are widely used for seismic retrofit of bridges due to their excellent vertical stiffness and flexible lateral stiffness. Especially, it has the advantages of simple construction and low cost. Chloroprene rubber, a type of rubber material, has greater resistance to aging than natural rubber, but its performance is also degraded due to various deterioration factors. Although these aging characteristics are not reflected in the seismic design standards and seismic performance evaluation guidelines, it is reasonable to reflect this when related studies are accumulated. For chloroprene rubber, accelerated heat aging test was performed with variables of heating temperatures and exposure time to analyze shear characteristics. As aging progresses the maximum shear stress and shear strain decrease. Also, the shear stiffness is greatly increased at the same shear strain.

The Friction and Wear Characteristics of the Seat Recliner Parts Based on Lubricant Characteristics (윤활제 특성에 따른 시트 리클라이너 부품의 마찰 및 마모 특성)

  • Hong, Seok-June;Lee, Kwang-Hee;Lim, Hyun-Woo;Kim, Jae-Woong;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.183-189
    • /
    • 2019
  • The driver seat of an automobile is in direct contact with the driver and provides the driver with a safe and comfortable ride. The seat consists of a frame, a rail, and many recliners. In recent years, strength and operating force measurement testing of the recliner have become vital for designing car seats. However, performance evaluation requires expensive testing equipment, numerous seat products, and considerable time. Therefore, the trend is to reduce experimentation through interpretation. This study examines the lubrication of solid lubricant for automotive seat recliners and confirms the friction and wear performance. In this study, the lubrication behavior of solid lubricants for car seat recliners is investigated to ascertain the friction and wear performance and to provide accurate values for the strength analysis. The friction material consists of a pin and a plate made from steel, which is widely used in recliners. The friction and wear under lubrication conditions are measured by a reciprocating friction wear tester. The friction coefficient is obtained according to the load and speed. Based on the obtained results, it is possible to achieve a reduction in the error of the test value and the analysis by providing the friction coefficient and wear of the lubricant. The results can be applied to the analysis of automobile seat design.