• Title/Summary/Keyword: Steel for Construction

Search Result 3,425, Processing Time 0.028 seconds

Optimum design of retaining structures under seismic loading using adaptive sperm swarm optimization

  • Khajehzadeh, Mohammad;Kalhor, Amir;Tehrani, Mehran Soltani;Jebeli, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.93-102
    • /
    • 2022
  • The optimum design of reinforced concrete cantilever retaining walls subjected to seismic loads is an extremely important challenge in structural and geotechnical engineering, especially in seismic zones. This study proposes an adaptive sperm swarm optimization algorithm (ASSO) for economic design of retaining structure under static and seismic loading. The proposed ASSO algorithm utilizes a time-varying velocity damping factor to provide a fine balance between the explorative and exploitative behavior of the original method. In addition, the new method considers a reasonable velocity limitation to avoid the divergence of the sperm movement. The proposed algorithm is benchmarked with a set of test functions and the results are compared with the standard sperm swarm optimization (SSO) and some other robust metaheuristic from the literature. For seismic optimization of retaining structures, Mononobe-Okabe method is employed for dynamic loading conditions and total construction cost of the structure is considered as the single objective function. The optimization constraints include both geotechnical and structural restrictions and the design variables are the geometrical dimensions of the wall and the amount of steel reinforcement. Finally, optimization of two benchmark retaining structures under static and seismic loads using the ASSO algorithm is presented. According to the numerical results, the ASSO may provide better optimal solutions, and the designs obtained by ASSO have a lower cost by up to 20% compared with some other methods from the literature.

A system of several fraction laws for the identification of rotating response of FG shell

  • Yahya, Ahmad;Hussain, Muzamal;Khadimallah, Mohamed A.;Khedher, Khaled Mohamed;Al-Basyouni, K.S.;Ghandourah, Emad;Banoqitah, Essam Mohammed;Alshoaibi, Adil
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.223-231
    • /
    • 2022
  • The problem is formulated by applying the Kirchhoff's conception for shell theory. The longitudinal modal displacement functions are assessed by characteristic beam ones meet clamped-clamped end conditions applied at the shell edges. The fundamental natural frequency of rotating functionally graded cylindrical shells of different parameter versus ratios of length-to-diameter and height-to-diameter for a wide range has been reported and investigated through the study with fractions laws. The frequency first increases and gain maximum value with the increase of circumferential wave mode. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing height-to-radius ratio. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases. The trigonometric frequencies are lower than that of exponential and polynomial frequencies. Stability of a cylindrical shell depends highly on these aspects of material. More the shell material sustains a load due to physical situations, the more the shell is stable. Any predicted fatigue due to burden of vibrations is evaded by estimating their dynamical aspects.

Frequency response of elastic nanocomposite beams containing nanoparticles based on sinusoidal shear deformation beam theory

  • Hou, Suxia;Wu, Shengbin;Luo, Jijun;Nasihatgozar, Mohsen;Behshad, Amir
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.555-562
    • /
    • 2022
  • Improving the mechanical properties of concrete in the construction industry in order to increase resistance to dynamic and static loads is one of the essential topics for researchers. In this work, vibration analysis of elastic nanocomposite beams reinforced by nanoparticles based on mathematical model is presented. For modelling of the strucuture, sinusoidal shear deformation beam theory (SSDBT) is utilized. Mori-anak model model is utilized for obtaining the effective properties of the strucuture including agglomeration influences. Utilizing the energy method and Hamilton's principal, the motion equations are calculated. The frequency of the elastic nanocomposite beam is obtanied by analytical method. The aim of this work is investigating the effects of nanoparticles volume percent and agglomeration, length and thickness of the beam on the frequency of the structure. The results show that the with enhancing the nanoparticles volume percent, the frequency is increased. In addition, the water absorption of the concrete is presented in this article.

Estimation of frost durability of recycled aggregate concrete by hybridized Random Forests algorithms

  • Rui Liang;Behzad Bayrami
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.91-107
    • /
    • 2023
  • An effective approach to promoting sustainability within the construction industry is the use of recycled aggregate concrete (RAC) as a substitute for natural aggregates. Ensuring the frost resilience of RAC technologies is crucial to facilitate their adoption in regions characterized by cold temperatures. The main aim of this study was to use the Random Forests (RF) approach to forecast the frost durability of RAC in cold locations, with a focus on the durability factor (DF) value. Herein, three optimization algorithms named Sine-cosine optimization algorithm (SCA), Black widow optimization algorithm (BWOA), and Equilibrium optimizer (EO) were considered for determing optimal values of RF hyperparameters. The findings show that all developed systems faithfully represented the DF, with an R2 for the train and test data phases of better than 0.9539 and 0.9777, respectively. In two assessment and learning stages, EO - RF is found to be superior than BWOA - RF and SCA - RF. The outperformed model's performance (EO - RF) was superior to that of ANN (from literature) by raising the values of R2 and reducing the RMSE values. Considering the justifications, as well as the comparisons from metrics and Taylor diagram's findings, it could be found out that, although other RF models were equally reliable in predicting the the frost durability of RAC based on the durability factor (DF) value in cold climates, the developed EO - RF strategy excelled them all.

Utilization of deep learning-based metamodel for probabilistic seismic damage analysis of railway bridges considering the geometric variation

  • Xi Song;Chunhee Cho;Joonam Park
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.469-479
    • /
    • 2023
  • A probabilistic seismic damage analysis is an essential procedure to identify seismically vulnerable structures, prioritize the seismic retrofit, and ultimately minimize the overall seismic risk. To assess the seismic risk of multiple structures within a region, a large number of nonlinear time-history structural analyses must be conducted and studied. As a result, each assessment requires high computing resources. To overcome this limitation, we explore a deep learning-based metamodel to enable the prediction of the mean and the standard deviation of the seismic damage distribution of track-on steel-plate girder railway bridges in Korea considering the geometric variation. For machine learning training, nonlinear dynamic time-history analyses are performed to generate 800 high-fidelity datasets on the seismic response. Through intensive trial and error, the study is concentrated on developing an optimal machine learning architecture with the pre-identified variables of the physical configuration of the bridge. Additionally, the prediction performance of the proposed method is compared with a previous, well-defined, response surface model. Finally, the statistical testing results indicate that the overall performance of the deep-learning model is improved compared to the response surface model, as its errors are reduced by as much as 61%. In conclusion, the model proposed in this study can be effectively deployed for the seismic fragility and risk assessment of a region with a large number of structures.

Foundation Types of Fixed Offshore Wind Turbine

  • Yun Jae Kim;Jin-wook Choe;Jinseok Lim;Sung Woong Choi
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.74-85
    • /
    • 2024
  • Offshore wind turbines are supported by various foundations, each with its considerations in design and construction. Gravity, monopile, and suction bucket foundations encounter geotechnical issues, while jacket and tripod foundations face fatigue problems. Considering this, a gravity foundation based on a steel skirt was developed, and a monopile foundation was analyzed for Pile-Soil Interaction using the p-y curve and 3D finite element method (3D FEM). In addition, for suction bucket foundations, the effects of lateral and vertical loads were analyzed using 3D FEM and centrifuge tests. Fatigue analysis for jacket and tripod foundations was conducted using a hotspot stress approach. Some hybrid foundations and shape optimization techniques that change the shape to complement the problems of each foundation described above were assessed. Hybrid foundations could increase lateral resistance compared to existing foundations because of the combined appendages, and optimization techniques could reduce costs by maximizing the efficiency of the structure or by reducing costs and weight. This paper presents the characteristics and research directions of the foundation through various studies on the foundation. In addition, the optimal design method is presented by explaining the problems of the foundation and suggesting ways to supplement them.

Construction of Kobe′s World Cup Venue and the Development of an Urban Resort

  • Tanaka, Mitsru;Hayashi, Mayumi
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.1
    • /
    • pp.230-236
    • /
    • 2001
  • The usual definition of and urban resort was a place vastly different from places of daily life such as a theme park or other tourist destination. At the same time, revival of the combination of usual and unusual spaces, in a way like the mixed "Hare"(Special occasion of public event) and "Ke"(Daily life) spaces of communities of old Japan, is part of the idea of urban resorts. And they are places, which start by making a comfortable urban environment for citizens, providing a daily life full of culture and promoting a city′s identity to visitors. if we think about the kinds of structural elements of urban resorts, the usual elements include community, local culture and industry, while the unusual elements include symbols, festivities and interaction. Kobe Wing Stadium is a venue for the 2002 FIFA World Cup hosted by Korea and Japan. The city will build the stadium, but after construction management will be given over to private enterprise, hoping to utilize that sector′s business know how. A competition was held to determine the private executor who would be entrusted with the planning, design, construction and management of the project, considering the conditions of the area, the stadium′s relationship to it and local revitalization. The competition was won by a private enterprise (Kobe Steel Obayashi Group). The them of "Creation of a Sports Community Park" grapples with the large issue of the facility′s relationship with the community. American geographer Yi-fu Tuan coined the word "topophilia" to indicate love of a place. No other word could better describe the desired urban resort nature of the stadium. From this historical perspective it seems that stadiums have great potential as urban resorts. The factor that will determine their success is the attitude of citizens toward them, in short whether they develop topophilia for them or not. We examined the urban resort nature of Kobe Wing Stadium. Regarding daily life, we saw the attempts to revive the local community, the possibility of deepening the local culture and the weakened state of local industry. As a place that is for more than daily life, we saw the certainty of the stadium′s symbolism, its potential as a place for festivities and the test it will face as a space for interaction. Even though several issues are left for future resolution, evaluating Kobe Wing Stadium through these elements of an urban resort, it is clearly founded in the daily life of the community while providing a venue for "Hare"occasions. Fulfilling the roles of an urban resort, it provides many opportunities for local residents to enjoy their and gives visitors a reason to come repeatedly.

  • PDF

Numerical Analysis on Tilting Control of Suction Pile for Offshore Wind Power (해상풍력 석션파일의 수직도 제어에 대한 수치해석)

  • Kim, Byeongwan;Kim, Youseok;Jin, Byeongmoo;Bae, Kyung-tae;Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.5-12
    • /
    • 2016
  • Numerical analyses were carried out to simulate tilting control on the suction pile for offshore wind power embedded into cohesive soil and cohesionless soil using finite element software, ABAQUS. A 3-dimensional suction pile was modelled as a wished-in-place pile with $1^{\circ}$ tilted from vertical line. The inner room of suction pile was divided into 3 separate rooms for tilting control, and point load was applied to the center of gravity of a separate room to restore the original position of the suction pile. From numerical analyses, required suction pressure was obtained for desired tilting degree, and the maximum/minimum principle stresses of concrete skirt and the Mises stresses of inner steel wall were collected at original position. It was found that the required suction pressure was about 410 kPa for cohesive soil, and about 1,800 kPa for cohesionless soil.; likewise, obtained stresses were greater for cohesionless soil than cohesive soil.

Design of Vam Cong Cable Stayed Bridge in Vietnam (베트남 밤콩 사장교의 설계)

  • Lee, Yong-Jin;Kang, Jeong-Woon;Bae, Sang-Woon;Yun, Yeon-Suk;Lho, Byeong-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.120-127
    • /
    • 2013
  • Vam Cong Cable Stayed Bridge which has 450m main span length is one of the Central Mekong Delta Region Connectivity Project and is located in Cuu Long Delta Region. It has steel-concrete composite girder with 4 lane and the type of cable is multi strand cable. The improved H-shape pylon and cast-in-place bored piles were applied. High strength concrete is applied for pylon, precast concrete slab and Cast-in-Situ concrete pile to ensure the structural safety. The present paper describe the design specifications and main features of Vam Cong Cable Stayed Bridge design.

A Study on the Improvement of Bridge Maintenance and Operation Level Using Life-Cycle Cost Analysis (LCC분석을 통한 교량 유지관리수준의 개선에 관한 연구)

  • Chun yong-Hyun;Lee Young-Dae;Park Hyeok;Kim Sung-Hwan;Kim Sa-Myung
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.266-269
    • /
    • 2003
  • This study predicts the maintenance and operation level of the bridge based on the LCC concept. In order to predict the LCC of the given case, suggested the maintenance and operation level after reviewing other related materials. Apply the real information of the maintenance and operation to the three casesof the maintenance and operation level (real, current, and prevented maintenance and operation level). And based on such analytical measures, maintenance and operation costs and LCC in maintenance and operation level, have been predicted: therefore, suggests the basic information about maintenance and operation level for the bridge. With a result of this study, we could obtain (1)the LCC of PSC-bridge and RC-bridge is more economy than Steel-bridge and (2)more active maintenance and operation of a bridge is absolutely necessary.

  • PDF