• Title/Summary/Keyword: Steel facility

Search Result 204, Processing Time 0.023 seconds

Analysis of facility expansion plan using simulation technique (복잡(複雜)한 물류(物流)SYSTEM을 가진 설비계획(設備計劃)문제의 SIMULATION 분석(分析))

  • Yun, Sang-Gyu
    • IE interfaces
    • /
    • v.1 no.1
    • /
    • pp.27-37
    • /
    • 1988
  • In the multi-stage and multi-process plant, it is not an easy task to describe the interrelationships among each process and facility. The purpose of this simulation study is to analyze the effect of additional facilities on productivity in a steel mill. The simulation was performed using SLAM Simulation Language for Alternative Modeling. The results of this study was used by the plant engineers in making decisions on the expansion of the plate mill. The prediction of which process would cause bottle-necks enabled the plant engineers to invest most effectively.

  • PDF

A Numerical Study on Temperature Profiles of Steel Plates Heated by Induction Heater (강재의 유도가열 방법의 수치적 승온 해석)

  • Kim, Hyeong-Jin;Chung, Won-Cheol;Cho, Byoung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1412-1416
    • /
    • 2003
  • Induction Heaters are commonly used in heating steel strip product, because it can rapidly and efficiently heat steel strip/bar. In this study, a inductive heating model is developed and the predictions are compared with measured temperatures. The temperatures are measured from POSCO thin-slab rolling facility (so called Minimill). Induction heater is installed between reduction unit and holding furnace This induction heater raise the temperature of steel bars from $930^{\circ}C$ to about $1100^{\circ}C$ which gives the required temperature for finishing mill process after holding period at holding furnace. Unlike other simple equation models, this model allows us to predict temperature profiles of sections of steel bars.

  • PDF

Design of a Steel Bar Breaking System in a Sled Test Facility (Sled Test용 Steel Bar Breaking System의 설계)

  • Cho, In-Yong;Lee, Hyung-Joo;Lee, Kwon-Hee;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.770-775
    • /
    • 2001
  • Steel bar breaking system is a component of a sled test system for automobile crashworthiness. It is a recent idea for the sled test. In a sled test, a crash pulse is given as a input made from a real test. The steel bar breaking system is designed to generate a certain crash pulse. Orthogonal arrays from design of experiments (DOE) are employed. The factors of the array are panel thickness and the number of steel bars, and the levels are candidate values of them. A simulation is utilized for the crash analysis. A commercial system called LS/DYNA3D is adopted. A test system is designed based on the results.

  • PDF

Impact Resistant Performance of Steel Short Fiber-reinforced Cement Based Composites (Steel단섬유보강 시멘트복합체의 내충격성능)

  • Nam, Jeong-Soo;Kim, Hong-Seop;Choe, Gyeong-Cheol;Lee, Sang-Kyu;Son, Min-Jae;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.254-255
    • /
    • 2017
  • The aim of this study is to investigate the impact resistant performance of steel short fiber-reinforced cement based composites (SFRCCs) containing 1.0, 1.5, 2.0 and 3.0% volume fraction of steel short fibers subjected to high velocity impact of steel projectile (the diameter of 19.05mm and the mass of 28.13g). The gunpowder impact facility was used for impact tests, and the impact velocity was from about 350 to 700m/s. The specimens were damaged in various failure modes, which are penetration, scabbing, and perforation. Comparing with Plain specimen, SFRCCs have superior capacity on the scabbing limit, and slightly bulged in the back side under the impact velocity of 700m/s. In addition, the impact resistant performance of SFRCCs improved with increase of steel short fiber volume ratio. The fibers play an important role in controlling the local damage of SFRCCs.

  • PDF

In Situ Observation of Initial Rusting Process of Steel Containing Al Using Synchrotron Radiation X-Rays

  • Morimoto, J.;Yamashita, M.;Uchida, H.;Doi, T.;Kamimura, T.;Miyuki, H.;Konishi, H.;Mizuki, J.
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.112-118
    • /
    • 2008
  • We observed initial rusting process of steel containing Al under wet/dry cyclic condition with NaCl solution film using in situ X-ray diffraction spectroscopy at SPring-8 synchrotron radiation facility. It was found that mass fraction of iron oxides such as ${\alpha}-FeOOH$, ${\beta}-FeOOH$ and ${\gamma}-FeOOH$ varied with Al content. Some kinds of Al oxides were also found at the initial stage of corrosion. Those corrosion products might affect the corrosion process and corrosion rate of the steel.

A Study on a Development of Hybrid(Magnesium & Steel) Structure for Application of Cockpit Module (Cockpit Module용 Hybrid Structure개발에 관한 연구)

  • 박병구;이정환;김영삼;한성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.166-170
    • /
    • 2002
  • A hybrid structure composed of magnesium and steel is Instrument Panel structure used for the basement of cockpit module components. For that reason, A hybrid structure has to be designed for satisfying components assembly design facility and styling. There are various models of If like steel structure assembly, however having been applied normally, but magnesium structure assembly selected far saving weight down. This paper introduces a hybrid structure having advantages between steel and magnesium structure and presents a CAE technical solution based on a development project. furthermore, it provides desired direction of the future development is suggested.

UsN based Soundness Monitoring Diagnosis System of Power Transmission Steel Tower (UsN 기반의 송전철탑 건전성 감시진단시스템 기본설계)

  • Lee, Dong-Cheol;Bae, Ul-Lok;Kim, Woo-Jung;Min, Bung-Yun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.56-62
    • /
    • 2007
  • In this paper, design method for power tower hazard diagnosis/predition system based on UsN was proposed. The proposed method used multi-hybrid sensors to measure rotation, displacement, and inclination state of power tower, and made decision/prediction of hazard of power tower. System design was made with requirement analysis of monitoring for transmission power facility and use of MEMS and optic fiber sensors. For hazard decision, analysis of correlation was made using sensor output. LN based on IEC61850,international standard for digital substation, was also proposed. For transmission facility monitoring, digital substation and power tower were considered as parts of power facility networks.

CFD study of the PTS experiment in ROCOM test facility

  • Carija, Zoran;Ledic, Fran;Sikirica, Ante;Niceno, Bojan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2803-2811
    • /
    • 2020
  • With the aging of nuclear reactors, embrittlement of the reactor pressure vessel (RPV) steel, as a consequence of routine operations, is highly probable. To ensure operational integrity and safety, prediction and mitigation of compromising damage, brought on by pressurized thermal shock (PTS) following an emergency procedure, is of utmost importance. Computational fluid dynamics (CFD) codes can be employed to predict these events and have therefore been an acceptable method for such assessments. In this paper, CFD simulations of a density driven ECC state in the ROCOM facility are analyzed. Obtained numerical results are validated with the experimental measurements. Considerable attention is attributed to the boundary conditions and their influence, specifically outlet definitions, in order to determine and adequately replicate the non-active pumps in the facility. Consequent analyses focused on initial conditions as well as on the temporal discretization and inner iterations. Disparities due to different turbulent modelling approaches are investigated for standard RANS models. Based on observed trends for different cases, a definitive simulation setup has been established, results of which have been ultimately compared to the measurements.

Oxidation and Neutral Electrolytic Pickling Behavior of 304 and 430 Stainless Steels (304 및 430 스테인레스 강판의 산화 및 중성염 전해산세 거동)

  • Kim T. S.;Park Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.285-293
    • /
    • 2004
  • Oxidation behavior of 304 and 430 stainless steel were studied using thin film X-ray analysis and glow discharge spectrum analysis (here-after GDS). The oxidation layer of 304 stainless steel was composed of $Cr_2O_3\;and\;FeCrO_4$ and its thickness was about $1.5{\mu}m$ after $1\~5$ minutes of annealing at $1120^{\circ}C$ open air. However, the oxidation layer of 430 stainless steels was mainly composed of $Cr_2O_3$ and its typical thickness was 0.5um after $1\~5$ minutes of annealing at $1000^{\circ}C$ open air. Electro-chemical analysis revealed that the descaling of oxidation layer could be activated by Fe, Cr dissolution from the matrix behind the oxidation layer at the current density of $5\~10ASD$ and by Fe, Cr-oxide dissolution from the oxidation layer at the current density over than 10ASD. Electrolytic stripping of 430 and 304 revealed the intial incubation period of descaling by oxygen evolving at low current density range such as $5\~10ASD$. However the dissolution of oxide layer was occurred when applying the anodic current of $10\~20ASD$ on 430 and 304 stainless steels. It was suggested that the electrolytic pickling of high Cr bearing stainless steel such as 430 and 304 seemed to be the more effective in the high current density range such as $10\~20ASD$ than the low current density range such as $5\~10ASD$.

  • PDF

An Experimental Study on Flexural Properties of SC(Steel Plate Concrete) Beam Structure with Reinforced Concrete Joint (철근 콘크리트 구조와 강판 콘크리트 구조(Steel Plate Concrete) 이질접합부를 가진 보의 휨 하중 특성에 관한 실험연구)

  • Lee, Kyung-Jin;Hahm, Kyung-Won;Park, Dong-Soo;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.455-463
    • /
    • 2010
  • This paper describes the experimental study on the mechanical characteristics of a steel plate-reinforced concrete joint. As an alternative reinforced concrete structure, the SC modular construction method is widely used and studied in the field ofindustrial facility field. However, the structure characteristics of RC and SC joint are not yet studied completely. In this paper, the beam-type construction joint of RC and SC walls was made to simulate the application of SC module to the large RC structure. Also, an out-of-plane loading was applied to the test specimen in order to evaluate flexural strength and structural properties of the beam-type RC-SC joint.