• Title/Summary/Keyword: Steel fabrication

Search Result 436, Processing Time 0.026 seconds

Demonstration of Robust Micromachined Jet Technology and Its Application to Realistic Flow Control Problems

  • Chang Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.554-560
    • /
    • 2006
  • This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include: (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

Dismountable steel tensegrity grids as alternate roof structures

  • Panigrahi, Ramakanta;Gupta, Ashok;Bhalla, Suresh
    • Steel and Composite Structures
    • /
    • v.9 no.3
    • /
    • pp.239-253
    • /
    • 2009
  • This paper reviews the concept of tensegrity structures and proposes a new type of dismountable steel tensegrity grids for possible deployment as light-weight roof structures. It covers the fabrication of the prototype structures followed by their instrumentation, destructive testing and numerical analysis. First, a single module, measuring $1m{\times}1m$ in size, is fabricated based on half-cuboctahedron configuration using galvanised iron (GI) pipes as struts and high tensile stranded cables as tensile elements. Detailed instrumentation of the structure is carried out right at the fabrication stage. The structure is thereafter subjected to destructive test during which the strain and the displacement responses are carefully monitored. The structure is modelled and analyzed using finite element method (FEM) and the model generated is updated with the experimental results. The investigations are then extended to a $2{\times}2$ grid, measuring $2m{\times}2m$ in size, fabricated uniquely by the cohesive integration of four single tensegrity modules. After updating and validating on the $2{\times}2$ grid, the finite element model is extended to a $8{\times}8$ grid (consisting of 64 units and measuring $8m{\times}8m$) whose behaviour is studied in detail for various load combinations expected to act on the structure. The results demonstrate that the proposed tensegrity grid structures are not only dismountable but also exhibit satisfactory behaviour from strength and serviceability point of view.

A Preliminary Study on the Application of Three-Dimensional (3D) Printing Technologies to Hot Bulk Forming Processes - Example of Preform Design and Investigation of Hot-working Tool Steel Deposited Surface (3 차원 프린팅 기술의 열간 체적 성형 공정 적용에 관한 기초 연구 - 예비형상 설계 예 및 열간 금형강으로 적층된 표면 특성 분석)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Lee, Ho-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1093-1100
    • /
    • 2014
  • The goal of this paper is to investigate preliminary the applicability of 3D printing technologies for the development of the hot bulk forming process and die. 3D printing technology based on the plastic material was applied to the preform design of the hot forging process. Plastic hot forging dies were fabricated by Polyjet process for the physical simulation of the workpiece deformation. The feasibility of application of Laser-aided Direct Metal Rapid Tooling (DMT) process to the fabrication of the hot bulk metal forming die was investigated. The SKD61 hot-working tool steel was deposited on the heat treated SKD61 using the DMT process. Fundamental characteristics of SKD 61 hot-working tool steel deposited specimen were examined via hardness and wear experiments as well as the observation of the morphology. Using the results of the examination of fundamental characteristics, the applicability of the DMT process to manufacture hot bulk forming die was discussed.

A Tribological Study of SiC-Steel Couples (탄화규소-강 미끄럼에서의 마모특성)

  • 장복기;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • The wear behavior of SiC in SiC-steel sliding couple was investigated under various wear test conditions, such as solid state sliding - dry and wet air atmosphere - or lubricated sliding, sliding velocity and at-mosphere temperature. The effect of SiC fabrication process on the SiC wear rate was also studied under varying sliding velocities. Humidity of air plays a lubricating role in the solid state sliding, while the wear behavior is largely influenced by the sliding velocity, especially if the atmosphere is extremely dry. The fa-brication process of SiC and the surface roughness result in different wear rate depending on the magnitude of sliding velocity. High temperature is, among others, the most deteriorating factor of wear, thus being strongly wear-accelerating even under boundary lubrication.

  • PDF

A Study on the Productivity Analysis of 3D BIM-based Fabrication Documents Extraction (3D BIM 기반 철골 제작도면 산출 생산성 분석)

  • Ham, Nam-Hyuk;Yang, Jung-Hye;Yuh, Ok Kyung
    • Journal of KIBIM
    • /
    • v.9 no.3
    • /
    • pp.30-40
    • /
    • 2019
  • Extraction of fabrication documents is very important because it provides information related to tasks of fabrication and construction. Therefore, in the case of a prefabricated member such as a steel structure, it is necessary to improve the productivity of fabrication documents through 3D BIM. However, research and evidence data on direct comparison analysis of 3D BIM-based documents extraction versus 2D CAD-based documents extraction are hard to find. Thus, this study focuses on productivity analysis of 3D BIM based fabrication documents extraction. In this study, the productivity data of fabrication documents extraction for module construction of EPC project was analyzed. For the productivity analysis, a case study on the fabrication documents of Module A (1,965 sheets) and Module B (1,216 sheets) was conducted. Fabrication documents for each module include general arrangement drawing, assembly drawing, single part drawing and single plate drawing. Comparison of 2D CAD based fabrication documents extraction and 3D BIM based fabrication documents extraction, the productivity for the entire work was improved from 17 hours to 16 hours for Module A and 12 hours to 7 hours for Module B. Especially, the productivity of the assembly drawings, which occupies a large part of the fabrication documents, was improved by about 48.75% from the total time required from 281 hours to 144 hours.

The electrical and corrosion properties of polyphenylene sulfide/carbon composite coated stainless steel bipolar plate for PEM fuel cell

  • Lee, Yang-Bok;Kim, Kyung-Min;Park, Yu-Chun;Hwang, Eun-Ji;Lim, Dae-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.89.2-89.2
    • /
    • 2011
  • Stainless steel bipolar plates have many advantage such as high electrical conductivity and mechanical strength and low fabrication cost. However, they need a passivation layer due to low corrosion resistance under PEM fuel cell operation condition. In this study, polyphenyene sulfide(PPS)/carbon composite coated stainless steel bipolar plates were fabricated by compression molding method after PPS/carbon composite sprayed on the stainless steel plate. PPS and carbon were chosen as the binder and conductive filler of passivation layer, respectively. The interfacial contact resistance and corrosion resistance of PPS/carbon composite coated stainless steel bipolar plates were investigated and compared to the stainless steel. The PPS/carbon composite coated stainless steel compared to stainless steel was improved interfacial contact resistance. The results of the potentiodynamic and potentiostatic measurements also showed that the PPS/carbon composite coated stainless steel did not corroded under PEM fuel cell operating conditions.

  • PDF

Effect of Machining Condition on Friction and Wear of Steel (탄소강의 가공조건과 마찰.마멸과의 관계)

  • Cheong, Chong-Hyeon;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1468-1476
    • /
    • 1996
  • Surface integrity is dictated by the fabrication process of the metal part. In this work, steel specimens were prepared under various mechine conditions to achieve different degrees of deformation state. The tribological characteristics of the speciments were tested using a pin-on-disk type apparatus and other surface characterization tools. It is shown that though frictional characteristics are similar, the wear rate is significantrly affected by the properties of the surface. In the case of steel, surface cracks resulted in high wear despite the relatively high hardness of the specimen. Also, the sliding action were found to reduce the residual stress on the surface. These results indicate that there is a strong relationship between surface integrity and the tribological properties of steel, and therefore the machining condition should be optimized woth respect to tribological performance of a steel part.

Fabrication and Mechanical properties of Steel Fiber Reinforced Polyester Resin Composites Utilizing by-Products (Fly Ash) (산업부산물을 이용한 강섬유보강 폴리에스터 수지복합체의 제조 및 역학적 특성)

  • 박승범;윤의식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.35-40
    • /
    • 1992
  • Results of an experimental study on the manufacture, the workability and mechanical properties of steel fiber reinforced polyester resin composites utilizing industrial waste products are presented in this paper. The fly ash polyester resin composites using steel fiber, fly ash and calcium carbonic acid (CaCo3), unsaturated polyester resin, styrene monomer, cobalt octate and methyl ethyl ketone peroxide, fine and coarse aggregates are prepared with various filler~binder rations, binder rates and mixing conditions. As a test results, the workability of steel fiber reinforced polyester resin composites are considerably dropped with increasing fly ash-binder ratio and steel fiber volume. And compressive, flexural strength and bending toughness of the composites are remarkably improved with augmenting fiber contents.

  • PDF