• Title/Summary/Keyword: Steel fabrication

Search Result 436, Processing Time 0.023 seconds

CALS oriented design/fabrication information system for steel bridges

  • Isohata, Hiroshi;Fukuda, Masahiko;Watanabe, Sueo
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.13-32
    • /
    • 2003
  • In this paper design and fabrication information system for steel bridge construction is studied and proposed according to the progress of Construction CALS/EC in the construction industry in Japan. The data exchange in this system bases on the text file as well as CAD data with simplified drawings. The concept of this system is discussed following the analysis on the issues of the conventional system. The application of the product model is also discussed including effects and issues on the inspection system. This paper is based on the study carried out by Special Committee on Construction CALS of JASBC to which author belong.

ANALYSIS OF THE PROCESS OF FABRICATION OF STEEL STRUCTURES USING AN AUTOMATIC CONSTRUCTION SYSTEM

  • Hak-Ju Lee;Yoonseok Shin;Wi Sung Yoo;Hunhee Cho;Kyung-In Kang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1081-1087
    • /
    • 2009
  • An automatic construction system in Korea is now at the stage of the full automation like in Japan, and an actual pilot project is going to be built in 2009. However, in developing a new construction system that has never been implemented before, there is a need to assess the performance and to consider the uncertainty of the system. The program evaluation and review technique (PERT) allows dealing with this uncertainty. Thus, this paper implements an analysis of the process of steel fabrication and makes suggestions for time-related problems arising from the analysis. The time required for steel erection by the automatic system was compared with that in the traditional method. In the result, finding out another construction process and improving robot performance were proposed to resolve the problems. The results will contribute to promoting the development of an efficient system for the new automatic construction system.

  • PDF

Demonstration of Alternative Fabrication Techniques for Robust MEMS Device

  • Chang, Sung-Pil;Park, Je-Young;Cha, Doo-Yeol;Lee, Heung-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.184-188
    • /
    • 2006
  • This work describes efforts in the fabrication and testing of robust microelectromechanical systems (MEMS). Robustness is typically achieved by investigating non-silicon substrates and materials for MEMS fabrication. Some of the traditional MEMS fabrication techniques are applicable to robust MEMS, while other techniques are drawn from other technology areas, such as electronic packaging. The fabrication technologies appropriate for robust MEMS are illustrated through laminated polymer membrane based pressure sensor arrays. Each array uses a stainless steel substrate, a laminated polymer film as a suspended movable plate, and a fixed, surface micromachined back electrode of electroplated nickel. Over an applied pressure range from 0 to 34 kPa, the net capacitance change was approximately 0.14 pF. An important attribute of this design is that only the steel substrate and the pressure sensor inlet is exposed to the flow; i.e., the sensor is self-packaged.

Feasibility study on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell

  • Chung, Myungjin;Kim, Jongmin;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.571-582
    • /
    • 2019
  • This study aimed to assess the feasibility on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell. First, 5-m-wide and 15-m-long 9%Ni steel plates were test manufactured from a steel mill and specimens taken from the plates were tested for strength, toughness, and flatness to verify their performance based on international standards and design specifications. Second, plates with a thickness of 10 mm and 25 mm, a width of 4.8~5.0 m, and a length of 15 m were test fabricated by subjecting to pretreatment, beveling, and roll bending resulting in a final width of 4.5~4.8 m and a length of 14.8m with fabrication errors identical to conventional plates. Third, welded specimens obtained via shield metal arc welding used for vertical welding of inner tank shell and submerged arc welding used for horizontal welding were also tested for strength, toughness and ductility. Fourth, verification of shell plate material and fabrication was followed by test erection using two 25-mm-thick, 4.5-m-wide and 14.8-m-long 9%Ni steel plates. No undesirable welding failure or deformation was found. Finally, parametric design using wide and long 9%Ni steel plates was carried out, and a simplified design method to determine the plate thickness along the shell height was proposed. The cost analysis based on the parametric design resulted in about 2% increase of steel weight; however, the construction cost was reduced about 6% due to large reduction in welding work.

Case Study on Economical Fabrication and Erection of Steel Structure and Reduction in Field Erection Time (경제적 철골제작$\cdot$설치 및 공기단축 사례분석연구)

  • Ahn Jae-Bong;Choi Yoon ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.183-192
    • /
    • 2004
  • Even in Korea the number of steel structure buildings that allow internal space and easy change of their layouts in accordance with the purpose of buildings and box-type steel bridges constructed with thick plates with thickness in a rage just from a few $\beta$AE to \$100\beta$AE is increasing these days and therefore, domestic fabrication and processing technology of members for steel structures is being improved at a pace faster than in the past to meet the growing requirements of consumers for high reliability on quality control on the related steel structures. However, most domestic fabricators os steel structures who are turning out their steel products in accordance with the designs prepared by engineering companies in their respective works for the sake of cost cut more than anything else, hesitating to introduce any advanced new technology into themselves. In the case of the steel structure design application for small and mid-size buildings in particular, it is quite meaningful not only for those who are involved in steel structure business, but also for the people working at construction work fields to review the result of the study on the connections of steel structure members deigned to obtain superb quality of steel structures within short period for steel fabrication and erection at fields in economical ways, as there is a glowing tendency seeking standardization of connection of steel structure members as well as whole structure together with the development on design of construction system of buildings including their exterior and interior decoration materials, manufacture of the related members and fabrication technique structure. This paper has been prepared with the aim to review the peculiar characteristics of buildings constructed with the main frames of steel structures and actual cases of the change made ing the connections between steel structure columns and between columns and girder members in order to reduce the work period necessary for fabrication and erection of steel structures at the maximum as well as the some examples of steel structures fabricated through automatic welding by robots for box-type columns in addition to the description of the problems found in the course of fabricating those steel structures, suggesting possible counter-measures to solve them.

Clad강의 debonding 현상에 대한 연구 2

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.22-27
    • /
    • 1987
  • The debonding of clad steel was often occurred at interface between stainless steel and carbon steel during the fabrication of pressure vessel. In order to clarify the causes of debonding phenomena, the fabrication sequences were fully analyzed. As a result, possible factors were noticed for causing the debonding of clad steel, that is, thermal treatment on weldment and welding. Moreover the existence of hydrogen diffused from surroundings also expedites the debonding of clad steel. In this stud, the effect of welding thermal cycle, hydrogen and mixed condition under thermal treatment on the interfacial strength of clad steel were investigated to understand the debonding mechanism of clad steel. From this study, it has been confirmed that the interfacial strength of clad steel was remarkablely deteriorated due to welding and/or existence of hydrogen under thermal treatment. In the case of welding thermal cycle effect, the higher temperature at interface experienced by welding, the more reduction in interfacial strength of clad steel resulted in. And the existence of diffusible hydrogen also reduced the interfacial strength. It is also found that the interfacial strength of clad steel became much lower value than that of the as-received plate under coexistence of above mentioned factors.

  • PDF

INCORPORATING CONTEXT LEVEL VARIABLES TO IMPROVE OPERATION ANALYSIS IN STEEL FABRICATION SHOPS

  • Amin Alvanchi;SangHyun Lee;Simaan M. AbouRizk
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1053-1059
    • /
    • 2009
  • Construction system modeling can enhance work performance by following the behaviors of a system. System behaviors may originate from physical aspects of a system, namely operation level variables, or from non-physical aspects of a system known as context level variables. However, construction system modelers usually focus on only one type of system variable (i.e., operation level or context level) which can lead to less accurate results. Hybrid modeling with System Dynamics (SD) and Discrete Event Simulation (DES) is one of the approaches that has been utilized to address this issue. In this research, an SD-DES hybrid model of a steel fabrication shop is developed, and the benefits of capturing context level variables together with operation level variables in the model are discussed.

  • PDF

The Emergence of the Diagrid - It's All About the Node

  • Boake, Terri Meyer
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.293-304
    • /
    • 2016
  • The diagrid structural system for constructing tall buildings is a recent invention. Debuting in 2004 with the construction of the Swiss Re Tower in London, this aesthetically driven structural system has centered the perfecting of its technology on the development of the nodes that form its innovative deviation from standard steel tall framing methods. The paper examines variations in node design, understanding the linked dependence the modularity and the choice to expose the steel in the building, as well as on advances in digital modelling that allow an increasingly seamless line of communication from the engineering design through to the actual fabrication of the nodes. This advanced design and fabrication technology will be seen to have resulted in the expanded use of the technical term "node" to inform the design and construction of a range of other applications in the structuring of tall buildings, including the use of steel castings.

A Study on the Optimum Design of Cargo Tank for the LPG Carriers Considering Fabrication Cost (건조비를 고려한 LPG 운반선 화물창의 최적설계에 관한 연구)

  • Shin, Sang-Hoon;Hwang, Sun-Bok;Ko, Dae-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.178-182
    • /
    • 2011
  • Generally in order to reduce the steel weight of stiffened plate, stiffener spaces tend to be narrow and the plate gets thin. However, it will involve more fabrication cost because it can lead to the increase of welding length and the number of structural members. In the yard, the design which is able to reduce the total fabrication cost is needed, although it requires more steel weight. The purpose of this study is to find optimum stiffener spaces to minimize the fabrication cost for the cargo tank of LPG Carriers. Global optimization methods such as ES(Evolution Strategy) and GA(Genetic Algorithm) are introduced to find a global optimum solution and the sum of steel material cost and labor cost is selected as main objective function. Convergence degree of both methods in according to the size of searching population is examined and an efficient size is investigated. In order to verify the necessity of the optimum design based on the cost, minimum weight design and minimum cost design are carried out.

Incomplete fabrication effects on represtressing preflex girders encased in concrete

  • Jeong, Euisuk;Lee, Hwan-Woo;Lee, Jaeha
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.67-77
    • /
    • 2022
  • In the current study, ordinary design of Represstessed Pre-Flex (RPF) girder by classical beam theory and numerical model taking buckled shape into consideration were compared with field-survey data to find imperfections on the RPF girder before prestressing and after preflexion. It should be noted that the ordinary design do not consider deformed shape of steel girder in RPF beam. The deformed shapes of steel girder due to the incomplete fabrication that could be caused by self-weight, preflexion misalignment, existence of lateral bracing at mid-span and stiffness of reaction frame were found using a newly developed model which was verified against a deformation survey conducted on actual RPF girder in the field. The final observed deformed shapes of RPF after concrete shrinkage and before prestressing were classified into W, C and Unsymmetric shapes in regard to both survey and analytical results. The deformation survey showed negligible amount of unwanted deformation compared to the large size of the RPF girders. The shallower width of the bottom flange of steel girder caused amount of lateral torsional buckling under self-weight and preflexion thereby affecting the unwanted final overall shape of the RPF girders. However, it was found that the unwanted deformation of RPF girders by fabrication errors even though it is negligible compared to the size of the girder, caused unsymmetrical stress contours in concrete and additional tensile stress and raise some safety issues.