• Title/Summary/Keyword: Steel deck plate

Search Result 163, Processing Time 0.03 seconds

Collapse Analysis of Ultimate Strength for the Aluminium Stiffened Plate subjected to Compressive Load (알루미늄 보강판의 압축 최종강도 붕괴 해석)

  • Park, Joo-Shin;Ko, Jae-Yong;Kim, Yun-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.825-831
    • /
    • 2007
  • The use of high-strength aluminum alloys for ship and offshore structure generally has many benefits compared to the structural steels. These materials are used widely in a variety of fields, especially in the hull and deck of high speed craft, box-girder of bridges, deck and side plates of offshore structure. The structural weight can be reduced using these aluminum structure, which can enable high speed The characteristics of stress-strain relationship of aluminum structure are fairly different from the steel one, because of the influence of Heat Affected Zone(HAZ) by the welding processing. The HAZ of aluminum is much wider than that of steel with its high heat conductivity. In this paper, the ultimate strength characteristics of aluminum stiffened panel subjected to axial loading, such as the relationship between extent of HAZ and the behavior of buckling/ultimate strength, are investigated through the Finite Element Analysis with varying its range.

Dynamic Load Allowance of Highway Bridges by Numerical Dynamic Analysis for LRFD Calibration (LRFD 보정을 위한 동적해석에 의한 도로교의 동적하중허용계수)

  • Chung, Tae Ju;Shin, Dong-Ku;Park, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.305-313
    • /
    • 2008
  • A reliability based calibration of dynamic load allowance (DLA) of highway bridge is performed by numerical dynamic analysis of various types of bridges taking into account of the road surface roughness and bridge-vehicle interaction. A total of 10 simply supported bridges with three girder types in the form of prestressed concrete girder, steel plate girder, and steel box girder is analyzed. The cross sections recommended in "The Standardized Design of Highway Bridge Superstructure" by the Korean Ministry of Construction are used for the prestressed concrete girder bridges and steel plate girder bridges while the box girder bridges are designed by the LRFD method. Ten sets of road surface roughness for each bridge are generated from power spectral density (PSD) function by assuming the roadway as "Average Road". A three dimensionally modeled 5-axle tractor-trailer with its gross weight the same as that of DB-24 design truck is used in the dynamic analysis. For the finite element modeling of superstructure, beam elements for the main girder, shell elements for concrete deck, and rigid links between main girder and concrete deck are used. The statistical mean and coefficient of variation of DLA are obtained from a total of 100 DLA results for 10 different bridges with each having 10 sets of road surface roughness. Applying the DLA statistics obtained, the DLA is finally calibrated in a reliability based LRFD format by using the formula developed in the calibration of OHBDC code.

An Experimental Study on the Longitudinal Resistance Behavior of an Existing Ballastless Steel Plate Girder Bridge (기존 무도상 판형교 궤도의 종저항거동에 대한 실험)

  • Kim, Kyoungho;Hwang, Inyoung;Baek, Inchul;Choi, Sanghyun
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.327-337
    • /
    • 2018
  • Since the track of the ballastless steel plate girder bridge is connected to a main girder without a deck and a ballast, the impact generated by train passage is transferred directly to bridge main members, and it can cause frequent damage of the bridge as well as higher noise and vibration level. Applying the CWR (Continuously Welded Rail) technology can reduce this structural problems, and, to this end, it is necessary to understand the characteristics of factors influencing vehicle-track or track-bridge interaction. In this paper, experimental study results are presented for examining the longitudinal resistance characteristics of the track, including a rail fastener, a sleeper fastener, and a track skeleton, installed on a ballastless steel plate girder bridge. The experiment is conducted using a disposed bridge from service, which is transported to a laboratory. The experimental results show that the rail fastener satisfies the performance criteria of the longitudinal resistance presented in KRS TR 0014-15, and the longitudinal resistance of old and new type sleeper fasteners is higher than the values provided in the existing research. Also, the unloaded longitudinal resistance of the ballastless track is between the ballast and the concrete tracks.

Experimental Study on Deformation Resistance Capacity of SY Permanent Steel Form for RC Beam and Girder under Casting Concrete (SY 비탈형 보 거푸집의 콘크리트 타설시 변형저항성능에 관한 실험적 연구)

  • Bae, Kyu-Woong;Shin, Sang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.605-615
    • /
    • 2021
  • Recently, to shorten construction periods and reduce labor costs, the need for a corrugated beam form in the RC structure is being emphasized. The purpose of this study is to evaluate the deformation performance of SY Beam, a newly developed corrugated beam form work, during concrete casting. The standard cross-sectional shape of SY Beam was determined by modeling the deck structure of various thicknesses using the MIDAS GEN program. As a result, the cross-sectional dimensions of the SY Beam were determined to be 400mm and 450mm in width and height, respectively. A total of three SY Beam specimens were fabricated using steel plate thicknesses of 0.8, 1.0, and 1.2mm. The load conditions applied during casting concrete at the actual site are reflected. The vertical and horizontal displacements of the SY beam were measured during concrete casting. As a result, the vertical displacement showed a tendency to decrease as the thickness increased. Considering both vertical and horizontal displacement, the case with steel plate thickness of 1.2mm is the safest and most immediately applicable to the field. In the future, to secure manufacturability, constructability, and economics, the optimum steel plate thickness should be derived, and additional analysis and experimental studies for 1.05, 1.1, and 1.15mm are required.

Study on numerical analysis for capability improvement of long span bridge with orthotropic steel deck (장지간 교량의 강바닥판 성능 강화를 위한 수치해석 연구)

  • Kong, Byung-Sueng;Kim, Jae-Gon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.669-672
    • /
    • 2011
  • 본 논문은 사하중 절감이 중요한 장지간 교량에 있어서 유리한 구조를 가지는 강바닥판의 성능 강화를 위한 수치해석 연구를 실시하였다. 이미 국내외에서는 다수의 강바닥판을 이용한 교량의 시공 사례가 많으며, 앞으로도 시공 또는 계획될 해상 장지간 교량에서도 강바닥판 교량의 사례가 많을 것으로 판단된다. 강바닥판 교량은 공기를 단축할 수 있으며, 들보의 높이가 작아서 날씬한 형상으로 할 수 있기 때문에 미관을 향상 시킬 수 있을 뿐만 아니라 가설 공사비를 절감시킬 수 있는 등 많은 장점을 갖고 있다. 하지만 강바닥판은 이상과 같이 장점을 갖는 구조이지만 비교적 얇은 강판을 복잡한 형상으로 용접하여 조립함에 용접 결함, 잔류응력, 면내 및 면외 변형의 발생 등의 문제점이 지적되고 있다. 따라서 외국에서는 강바닥판의 피로 손상에 대한 실험 및 연구로 많은 자료를 확보하고 있으며, 국내에서도 국내 현실에 맞는 강바닥판의 피로거동 및 피로강도 향상방안에 관한 연구가 더욱더 필요하다. 본 연구에서는 국내교량에 적용되고 있는 구조상세 및 구조해석을 실시하여 강바닥판의 피로거동과 응력 특성을 파악하고, 피로강도를 향상하는 방법으로 Bulkhead Plate와 수직리브 형상 및 부착에 따른 거동을 분석하고, 최적상세를 도출하여 강바닥판의 적극적인 활용화에 그 목적이 있다.

  • PDF

Estimation of Dynamic Displacements from Strain Signal using Mode Shapesof Simply Supported Beam (단순보 모드형상을 이용하여 변형률 신호에서 동적변위 응답 추정)

  • Shin, Soo-Bong;Lee, Seon-Ung;Han, Ah-Reum-Sam;Kim, Hyun-Su;Kim, Hee-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.326-331
    • /
    • 2009
  • An algorithm is proposed for computing dynamic displacements of a bridge using FBG sensors. An existing algorithm for estimating dynamic displacements of a simply supported beam through mode superposition is extended and applied to various types of bridges with bending and torsional modes. The proposed algorithm is examined through field tests on a suspension span steel deck plate box girder bridge. Guidelines are provided for determining the number of modes and the number of strain gages to be used.

  • PDF

Optimal Design of High-Speed Railway Bridges Considering Static and Dynamic Constraints (정적 및 동적 제약조건을 고려한 고속철도 교량의 최적화 설계)

  • 안예준;신영석;신동구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.135-142
    • /
    • 1999
  • Plate girder bridges for tile Korean high-speed railway are optimally designed. Static and dynamic constraints are all considered. The design variables are the thicknesses and the lengths of the plates that are used to form I-shaped main girders with variable cross-sections. And the objective function is tile steel weight of a main girder. A C++ based design program is developed; this program interfaces with a FORTRAN based optimization program ADS. From the results of optimal design for various span lengths, it is observed that the deck vertical acceleration is one of the most important constraints in a special range of tile span length. Front a parametric study, sensitivity of the optimal design to static as well as dynamic constraints are presented.

  • PDF

After-fracture redundancy in simple span two-girder steel bridge

  • Park, Yong-Myung;Joe, Woom-Do-Ji;Hwang, Min-Oh;Yoon, Tae-Yang
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.651-670
    • /
    • 2007
  • An experimental study to evaluate a redundancy capacity in simple span two plate-girder bridges, which are generally classified as a non-redundant load path structure, has been performed under the condition that one of the two girders is seriously damaged. The bottom lateral bracing was selected as an experimental parameter and two 1/5-scale bridge specimens with and without bottom lateral bracing have been prepared. The loading tests were first performed on the intact specimens without cracked girder within elastic range. Thereafter, the ultimate loading tests were conducted on the damaged specimens with an induced crack at the center of a girder. The test results showed that the cross beams and concrete deck redistributed partly the applied load to the uncracked girder, but the lateral bracing system played a significant role of the load redistribution when a girder was damaged. The redundancy was evaluated based on the test results and an appropriate redundancy level was evaluated when the lateral bracing was provided in a seriously damaged simple span two-girder steel bridge.

Stress Concentration at Connection and Cut-Out Parts according to Existence of Scallop and Diaphragms on Orthotropic Steel Decks (강바닥판의 스캘럽·다이아프램 설치 유무에 따른 교차부·컷아웃부 응력집중)

  • Shin, Jae Choul
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.289-299
    • /
    • 2006
  • Orthotropic steel decks are manufactured by welding thin plates therefore it is inevitable that there are abundant works of welding process. On connection of transverse rib web, crossing point of longitudinal rib, transverse rib and deck plate and cut-out parts of transverse rib are the significant position of stress concentration phenomenon because of out of plane and oil-caning deformation caused by longitudinal rib distortion with shear force and distortion. In order to reduce the stress concentration phenomenon and improving fatigue performance at the crosing point and cut-out, structural analysis was performed considering the existence of scalop at conection and diaphragm which have same plane with transverse rib placed inside of longitudinal rib. Result o f the analysis show that there are the largest efect of stres concentration reduction when diaphragms are installed without scallop at connection, therefore these detail can improve the fatigue performance of orthotropic steel decks.

Flexural Behavior of Encased Composite Beams with Partial Shear Interaction (매립형 불완전 합성보의 휨 거동 예측)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.747-757
    • /
    • 2004
  • With steel and concrete composite beams, the incomplete interaction between the steel and the concrete slab leads to an appreciable increase in beam deflections. Moreover, encased composite beams using a deep deck plate or hollow-core PC slabs are critical to deflection due to their inherent geometry. In this paper, by using the calculation tools that were developed for a previous study on the deflection of encased composite beams considering the slip effects and load-slip curve, the shear bond stress and additional deflection induced due to interface slip of the encased composite beam are presented. It was found that the slip effects significantly contribute to the encased composite beam deflections and result in stiffness reduction of up to 30% compared to that of full shear interaction beams. The predicted results were compared with the measurement of 18 specimens tested in this study, and comparisons show a high degree of accuracy, within 6%.