• Title/Summary/Keyword: Steel box girder

Search Result 305, Processing Time 0.035 seconds

Optimization of Steel Box Girder Bridges using Approximate Reanalysis Technique (재해석 기법을 이용한 강상자형교의 최적설계)

  • Min, Dae-Hong;Yoon, Woo-Hyun;Chung, Jee-Seung;Yang, Sung-Don
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.80-86
    • /
    • 2011
  • Structural optimization algorithm of steel box girder bridges using improved higher-order approximate reanalysis technique is proposed in this paper. The proposed approximation method is a generalization of the convex approximation method. The order of the approximate reanalysis for each function is analytically adjusted in the optimization process. This self-adjusted capability makes the approximate structural analysis values conservative enough to maintain the optimum design point of the approximate problem. The efficiency of proposed optimazation algorithm, compared with conventional algorithm, is successfully demonstrated in the steel box girder bridges. The efficiency and robustness of proposed algorithm is also demonstrated in practical steel box girder bridges.

Design of multi-span steel box girder using lion pride optimization algorithm

  • Kaveh, A.;Mahjoubi, S.
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.607-618
    • /
    • 2017
  • In this research, a newly developed nature-inspired optimization method, the Lion Pride Optimization algorithm (LPOA), is utilized for optimal design of composite steel box girder bridges. A composite box girder bridge is one of the common types of bridges used for medium spans due to their economic, aesthetic, and structural benefits. The aim of the present optimization procedure is to provide a feasible set of design variables in order to minimize the weight of the steel trapezoidal box girders. The solution space is delimited by different types of design constraints specified by the American Association of State Highway and Transportation Officials. Additionally, the optimal solution obtained by LPOA is compared to the results of other well-established meta-heuristic algorithms, namely Gray Wolf Optimization (GWO), Ant Lion Optimizer (ALO) and the results of former researches. By this comparison the capability of the LPOA in optimal design of composite steel box girder bridges is demonstrated.

Behaviors According to the Reinforcing Method of the Support Diaphragm Manhole in Steel Box Girder Bridge (강박스거더 지점부 다이아프램 맨홀의 보강방법에 따른 거동)

  • Lee, Seong Haeng;Kim, Kyoung Nam;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.649-660
    • /
    • 2005
  • Since the diaphragm manhole of steel box girder bridges is designed generally from experience, it has become the primary factor in the excessive cost of steel bridge construction. For the economical and efficient manufacture of diaphragm manholes, it is necessary to study the exact behavior of the diaphragm manhole in a steel box girder bridge. In this study, both an experimental test and a structural analysis are performed to verify the behavior of the diaphragm manhole in a steel box girder bridge. A detailed structural analysis was performed according to various diaphragm manhole shapes, and in conclusion, the suitable reinforcement method for the support of diaphragm manholes in steel box bridges is presented.

Automated Optimum Design Program for Steel Box Girder Bridges (강상자형교의 자동화 최적설계 프로그램)

  • Cho, Hyo-Nam;Chung, Jee-Sung;Min, Dae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.475-485
    • /
    • 2000
  • In this study, an automated optimum design program for steel box girder bridges has been developed for the optimum design of composite steel box girder bridges. The design constraints required for the optimum design of steel box girder bridges are based on the Korean standard bridge specification. Considering characteristics of steel box girder bridges, several approximation techniques, such as artificial constraint deletion, variable linking and stress reanalysis technique etc. are also introduced to enhance the efficiency of optimization. The developed program is mainly composed of major sub-system modules including structural analysis module using commercial structural analysis program such as RM-SPACEFRAME, optimum design module, pre-process module for friendly user input, and post-processor module for office automation. In addition, in order to demonstrate the efficiency and applicability of the developed optimum design program for steel box girder bridges, a few numerical examples are applied. Based on the results of the application, it may be stated that the automatic optimum design program developed in this study can be a prototype model for the developement of optimum design program for other type of bridge.

  • PDF

Prestressing Inducing Effect of Continuous Open-top Steel Box Girder Using Modular CFT Members (모듈형 CFT부재를 이용한 개구제형 연속 강박스 거더의 프리스트레싱 도입 효과)

  • Lee, Hak Joon;Kim, Ryeon-Hak;Cho, Kwang-Il;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.111-119
    • /
    • 2022
  • The increasing sectional stiffness and inducing prestress method of continuous steel box girder using modular CFT members use the restoring force of the CFT module generated from removing the prestressing bars in the CFT module after integrating the prestressed CFT module with the lower steel plate of the steel box girders as a prestressing force. The integrated CFT module in the steel box girder can improve the sectional stiffness of the continuous steel box girder section. To examine the applicability of the introduction of prestressing to the integrated steel box girder using the CFT module, in this study, inducing prestressing tests were conducted using CFT modules for steel plate specimens simulating the lower steel plate of the continuous steel box girder, and FE analyses were conducted for inducing prestressing tests. In addition, to confirm the effect of inducing prestress to the actual steel box girder and increasing sectional stiffness by the CFT modules, FE analyses for the actually applicable continuous steel box section were carried out depending on prestressing force and sectional conditions of the CFT modules, FE analysis results were compared.

The Behavior of Prestressed Composite Box Girder (프리스트레스트 합성상자형교의 거동 특성)

  • 김주형;한택희;김종헌;강영종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.591-596
    • /
    • 2001
  • In case of continuous steel box-girder bridges, the magnitude of the longitudinal tensile stress on concrete in internal support is larger than the tensile strength of concrete. In this paper, the parametric study was performed to present the effective magnitude of the longitudinal prestress for reducing the longitudinal tensile stress to decrease under the tensile strength of concrete. The parametric study is conducted with changing the steel box-girder section and the span length of bridge. Three dimensional finite element analyses are conducted with ABAQUS program. The behavior of the steel box-girder bridge with prestress is investigated through experimental works on a analogous steel box-girder bridge model, and their results are compared with those of analytical studies.

  • PDF

Load Distribution Factors for Determinating Shear Force in Steel Box Girder Bridges (강상자형교의 전단력 산정을 위한 하중분배계수)

  • Song, Jea Ho;Kim, Min Wook;Kim, Il Su;Oh, Jin Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.88-97
    • /
    • 2011
  • For Korean design provisions are not equipped for skewed steel box girder bridges, when American provisions are adopted, load distribution factors different from real behavior are determinated. Furthermore the possibility of over or under estimated bridge design involves. The aim of this study is to provide more rational load distribution factor formulas based on real behavior for shear at obtuse corner of skewed steel box girder bridges. In order to accomplish the aim finite element analysis for a variety of skewed steel box girder bridge structural models is carried out, and each parameters degree of influence on wheel load distribution factors of skewed steel box girder bridges are analyzed. Then multiple regression analysis is fulfilled in order to propose formulas for determinating shear force load distribution factor of skewed steel box girder bridges.

Optimization of Steel Box Girder Highway Bridges Using Discrete Variables (이산형변수를 고려한 강박스거더교의 단면최적화)

  • 김상효;이상호;이민구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.195-202
    • /
    • 1995
  • In this study, the optimization program is developed to provide preliminary designs of steel-box girder bridges with minimum cost. The advantages of steel-box girder deck, when comparing with other girder types, are higher torsional rigidity and better resistance against corrosion. To achieve more rational design, systematic design procedure is required, by which the design constraints on steel-box girder are satisfied and the design variables with minimum cost are obtained. In the Proposed optmum design Process, the design variables are forced to be selected from the available discrete value set. The efficiency of the developed program has been verified by companing with previous designed sections and the resulting optimum cost with discrete variables has been compared with those of continuous variables.

  • PDF

A Comparison Study on Load Distribution Behavior of Steel Box Girder Bridge (강상자형 교량의 하중분배 거동에 대한 비교 연구)

  • 나준호;정광모;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.313-321
    • /
    • 1999
  • To design steel box girder bridge, designers have taken the classical load distribution coefficient methods. Due to the rapidly developing computer technique, steel box girder bridge is simply modeled as grillage method for analyzing the girder, or as fully finite element method for more accurate and detailed analysis. Recently, cruciform space frame method is developed for modeling and analyzing it more simply and easily compared with finite element method. So, this study for the examination of upper methods' characteristics loaded unit moment load and analyzed the distortional deflection with shell element method and cruciform space frame method, and for three span three girder steel box bridge, loading DB-24 loads, analyzed it by upper methods and compared the results.

  • PDF

Behavior on Vertical Stiffener Length of Steel Box Girder Support Diaphragm (강상자형 다이아프램의 수직보강재 길이에 따른 거동)

  • Kim, Jong Ryeol;Kim, Woo Jun;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.489-497
    • /
    • 2003
  • Bridge has to be long-spanned and of simple structure, considering the social environment. As a result of this trend in bridge construction, it is important for the sake of economical efficiency to improve the structural system and increase the life cycle of a bridge. To attain these goals in constructing a steel bridge, the detail analyses based on real structure must be performed. In the steel structure bridge, the parts that are a main focus of interest are the diaphragm and the vertical bracing of the steel box girder support. This study observed the behavior of the diaphragms on the bearings of a closed section steel box girder bridge support, as dead load was increased. Stress variation of the support diaphragms in a steel box girder was considered, and both experimental test and structural analyses were performed to verify the behavior of a composite steel box girder bridge under repair or maintenance.