• Title/Summary/Keyword: Steel bar corrosion

Search Result 141, Processing Time 0.025 seconds

A comparative study on bond of different grade reinforcing steels in concrete under accelerated corrosion

  • Kurklu, G.;Baspinar, M.S.;Ergun, A.
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.229-242
    • /
    • 2013
  • Corrosion is important reason for the deterioration of the bond between reinforcing steel and the surrounding concrete. Corrosion of the steel mainly depends on its microstructure. Smooth S220, ribbed S420 and S500 grade reinforcing steels were used in the experiments. Samples were subjected to accelerated corrosion. Pullout tests were carried out to evaluate the effects of corrosion on bond strength of the specimens. S500 grade steel which has tempered martensite microstructure showed lower corrosion rate in concrete than S220 and S420 steels which have ferrite+perlite microstructure. S500 grade steel showed highest bond strength among the other steel grades in concrete. Bond strength between reinforcing steel and concrete increased with increase in the strength of steel and concrete. It also depends on whether reinforcing bar is ribbed or not.

Steel Probing in Concrete Using Steel Corrosion Surface Measurement Method Modeling (철근부식 표면측정법 모델링을 통한 콘크리트 내 철근 탐사)

  • Rhim, Hong-Chul;Ma, Hyang-Hwa;Lee, Suk-Yong;Lee, Kun-Woo;Oh, Jin-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.153-158
    • /
    • 2009
  • Using non-invasive surface measurement method, the corrosion state of steel embedded inside concrete can be measured by placing four electrodes on the surface of concrete. Modeling of such measurements can provide valuable information as how interfacial impedance between corroded steel and surrounding concrete results in measured impedance on the concrete surface. In this paper, the modeling of surface measurement technique is used for the determination of the sensitivity of the measurements with respect to steel bar size embedded inside concrete and cover thickness. Modeling results indicated that steel bar sizes varied from D10 to D35 could be identified. Concrete cover thickness changes from 0.02 m to 0.1 m was also distinguished using the modeling scheme. The results confirm this modeling technique is capable of determining steel bar sizes and cover thickness, as well as simulating corrosion responses.

Effect of Admixtures on the Steel Corrosion in Mortar (혼화재를 혼입한 모르터내의 철근부식성상에 관한 연구)

  • 임순지;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.145-149
    • /
    • 1995
  • This study is to recognize the effect of silica-fume, fly-ash, and chemical proportion in mortar that have salt on the inside affect steel bar corrosion. water-binder ratio, 0.5, compounds, each of 10, 15, 20% by weight of cement, Nacl mixing weight, 0.5, 1.0, 2.0% by weight of binder, The speciment is sealed and cured for 28days, the corrosion area ratio and weight reduction ratio is measured after the accelerated corrosion test of 20 cycles. The conclusion shows that there is no suppression effect of steel bar corrosion of silica-fume, fly-ash, in case of having salt on the inside.

  • PDF

Development and Durability Characteristics of FRP Reinforcing Bar for Concrete Structures (콘크리트 보강용 FRP 리바의 개발 및 내구 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Yoon, Jong-Han;Hwang, Kum-Sik;Cho, Yong-Jin
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.371-374
    • /
    • 2003
  • The corrosion of steel reinforcing bar(re-bar) has been the major cause of the reinforced concrete deterioration. FRP(Fiber-reinforced polymer) reinforcing bar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. In this study, long-term durability performance of FRP re-bar were evaluated. The mechanical and durability properties of two type of CFRP- and GFRP re-bar were investigated; the FRP re-bars were subjected to alkaline solution, acid solution, salt solution and deionized water. The mechanical and durability properties were investigated by performing tensile and short beam tests. Experimental results confirmed the desirable resistance of FRP re-bar to aggressive chemical environment.

  • PDF

Analysis of chloride penetration in the marine concrete pier (해양환경 콘크리트 교각의 염소이온 침투해석)

  • Kim, Ki-Hyun;Cha, Soo-Won;Jang, Sung-Yup;Park, Byoung-Sun;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.549-552
    • /
    • 2008
  • Corrosion of reinforcing steel is prohibited under normal condition by the alkalinity of the pore water in the concrete. But the probability of steel corrosion becomes higher when the chloride ions are introduced into the concrete. Steel corrosion is decisive factor for the determination of service life of the marine concrete structures because chloride ions are abundant in the sea. In this paper, chloride penetration analysis for the rectangular pier in the marine environment is performed considering the diffusion movement of chlorides. Result reveals that the chloride concentration in the corner bar is higher than that of in the side bar with rectangular pier. Also the time to the specified accumulation of chloride in the corner bar is much shorter than that in the side bar. Because the corrosion initiation time of corner bar is half as much as that of side bar, service life for the rectangular pier in marine environment should be determined with respect to the coner bar.

  • PDF

Cracking Behavior of Reinforced Concrete Structures due th Reinforcing Steel Corrosion (철근부식에 의한 철근콘크리트 구조물의 균열거동)

  • 오병환;김기현;장승엽;강의영;장봉석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.851-863
    • /
    • 2002
  • Corrosion products of reinforcement in concrete induce pressure to the adjacent concrete due to the expansion of steel. This expansion causes tensile stresses around the reinforcing bar and eventually induces cracking through the concrete cover The cracking of concrete cover will adversely affect the safety as well as the service life of concrete structures. The purpose of the this study is to examine the critical corrosion amount which causes the cracking of concrete cover. To this end, a comprehensive experimental and theoretical study has been conducted. Major test variables include concrete strength and cover thickness. The strains at the surface of concrete cover have been measured according to the amount of steel corrosion. The corrosion products which penetrate into the pores and cracks around the steel bar have been considered in the calculation of expansive pressure due to steel corrosion. The present study indicates that the critical amount of corrosion, which causes the initiation of cracking, increases with an increase of compressive strength. A realistic relation between the expansive pressure and average strain of corrosion product layer in the corrosion region has been derived and the representative stiffness of corrosion layer was determined. A concept of pressure-free strain of corrosion product layer was introduced to explain the relation between the expansive pressure and corrosion strain. The proposed theory agrees well with experimental data and may be a good base for the realistic durability design of concrete structures.

Long-Term Effect of Chemical Environments on FRP Reinforcing Bar for Concrete Reinforcement (화학적 환경에 노출된 콘크리트 보강용 FRP 보강근의 장기 효과)

  • Park, Chan-Gi;Won, Jong-Pil;Yoo, Jung-Kil
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.811-819
    • /
    • 2003
  • The corrosion of steel reinforcing bar(re-bar) has been the major cause of the reinforced concrete deterioration. FRP(Fiber-reinforced polymer) reinforcing bar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. However, FRP re-bar is pone to deteriorate due to other degradation mechanisms than those for steel. The high alkalinity of concrete, for instance, is a possible degradation source. Other potentially FRP re-bar aggressive environments are sea water, acid solution and fresh water/moisture. In this study long-term durability performance of FRP re-bar were evaluated. The mechanical and durability properties of two type of CFRP-, GFRP re-bar and one type of AFRP re-bar were investigated; the FRP re-bars were subjected to alkaline solution acid solution, salt solution and deionized water. The mechanical and durability properties were investigated by performing tensile, compressive and short beam tests. Experimental results confirmed the desirable resistance of FRP re-bar to aggressive chemical environment.

Development of non-destructive method of detecting steel bars corrosion in bridge decks

  • Sadeghi, Javad;Rezvani, Farshad Hashemi
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.615-627
    • /
    • 2013
  • One of the most common defects in reinforced concrete bridge decks is corrosion of steel reinforcing bars. This invisible defect reduces the deck stiffness and affects the bridge's serviceability. Regular monitoring of the bridge is required to detect and control this type of damage and in turn, minimize repair costs. Because the corrosion is hidden within the deck, this type of damage cannot be easily detected by visual inspection and therefore, an alternative damage detection technique is required. This research develops a non-destructive method for detecting reinforcing bar corrosion. Experimental modal analysis, as a non-destructive testing technique, and finite element (FE) model updating are used in this method. The location and size of corrosion in the reinforcing bars is predicted by creating a finite element model of bridge deck and updating the model characteristics to match the experimental results. The practicality and applicability of the proposed method were evaluated by applying the new technique to a two spans bridge for monitoring steel bar corrosion. It was shown that the proposed method can predict the location and size of reinforcing bars corrosion with reasonable accuracy.

Experimental Study on the Penetration Depth and Concentration of Corrosion Inhibitor Using Press-in Method Into the Inside of Concrete (콘크리트 내부로의 압입공법을 사용한 방청제의 침투깊이 및 농도에 관한 실험적 연구)

  • Cho, Hyeong-Kyu;Yoo, Jo-Hyeong;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.160-168
    • /
    • 2009
  • After steel bar was corroded it removes concrete contaminated, it does steel bar corrosion protection, repairing method and corrosion inhibitor spreading method are difficult to secure corrosion protection performance. Accordingly, in this research before Research and Development to penetrate corrosion inhibitor to high pressure by steel bar position, it measures penetration depth through corrosion inhibitor high pressure penetration experiment and amount of nitrite by position and then it predicts penetration depth in accordance with water-cement ratio, pressure, pressure time and it computed water-cement ratio, pressure, pressure time to be more than 0.6 mol ratio of chloride ion and nitrite to have outstanding corrosion protection performance. As a result of experiment, water-cement ratio gives the biggest influence to penetration of corrosion inhibitor and also the more depth of specimen becomes deep, concentration of penetrated corrosion inhibitor does not equal and becomes low.

Tensile Behavior and Fracture Properties of Ductile Hybrid FRP Reinforcing Bar for Concrete Reinforcement (콘크리트 보강용 고연성 하이브리드 FRP 보강근의 인장 및 파괴 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • FRP re-bar in concrete structures could be used as a substitute of steel re-bars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP fibers have only linearly elastic stress-strain behavior; whereas, steel re-bar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP re-bars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse is required. The main objectives of this study in to evaluate the tensile behavior and the fracture mode of hybrid FRP re-bar. Fracture mode of hybrid FRP re-bar is unique. The only feature common to the failure of the hybrid FRP re-bars and the composite is the random fiber fracture and multilevel fracture of sleeve fibers, and the resin laceration behavior in both the sleeve and the core areas. Also, the result of the tensile and interlaminar shear stress test results of hybrid FRP re-bar can provide its excellent tensile strength-strain and interlaminar stress-strain behavior.