• Title/Summary/Keyword: Steel bar

Search Result 910, Processing Time 0.02 seconds

Volumetric Error Measurement and Calibration of Coordinate Measuring Machines Using a Ball-bar Artifact (Ball-Bar Artifact를 이용한 CMM의 공간 오차 측정 및 분석)

  • 구상서;이응석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.143-148
    • /
    • 2001
  • Volumetric error measurement and calibration of a coordinate measuring machine are studied by using a Ball-Bar artifact. Examples of the Ball-Bar design are shown using inbar materials and precision steel balls. Also, for the uncertainty error using the Ball-Bar is discussed. Method of Ball-Bar artifact and the analysis of the error vectors are proposed. Using the Ball-Bar data, we studied the method of volumetric errors ana]ysis of a coordinate measuring machine.

  • PDF

Bond and ductility: a theoretical study on the impact of construction details - part 1: basic considerations

  • Zwicky, Daia
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.103-119
    • /
    • 2013
  • The applicability of limit analysis methods in design and assessment of concrete structures generally requires a certain plastic deformation capacity. The latter is primarily provided by the ductility of the reinforcement, being additionally affected by the bond properties between reinforcing steel and concrete since they provoke strain localization in the reinforcement at cracks. The bond strength of reinforcing bars is not only governed by concrete quality, but also by construction details such as bar ribbing, bar spacing or concrete cover thickness. For new concrete structures, a potentially unfavorable impact on bond strength can easily be anticipated through appropriate code rules on construction details. In existing structures, these requirements may not be necessarily satisfied, consequently requiring additional considerations. This two-part paper investigates in a theoretical study the impacts of the most frequently encountered construction details which may not satisfy design code requirements on bond strength, steel strain localization and plastic deformation capacity of cracked structural concrete. The first part introduces basic considerations on bond, strain localization and plastic deformation capacity as well as the fundamentals of the Tension Chord Model underlying the further investigations. It also analyzes the impacts of the hardening behavior of reinforcing steel and concrete quality. The second part discusses the impacts of construction details (bar ribbing, bar spacing, and concrete cover thickness) and of additional structure-specific features such as bar diameter and crack spacing.

Structure Behavior Evaluation of Beams composited with Steel and Reinforced Concrete (철근콘크리트와 강을 합성한 복합 단면보의 구조거동평가)

  • Kim, In Seok;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.665-673
    • /
    • 2008
  • The composite structures of steel and reinforced concrete, which have been widely used in large-scale concrete structures, werestudied to investigate the cause of unexpected cracks and to verify the composite actions between the two materials. Vertical stiffeners between flanges, studs and dowel bars, stirrups, and concrete strength were chosen as experimental variables in afour-point loading test. The results showed that the vertical stiffener prevented not only the local web buckling, but also bond failures between steel and concrete. It increased the flexural resistance (fracture loads) due to the composite action of two materials, compared withthose of any experimental variable. However, the composite behavior of steel reinforced concrete beam was not affected seriously by additional studs, dowel bars, stirrups, and concrete strength.

A Study on the Weld Condition of Gas Pressure Welding in Steel Bars (철근 가스압접의 접합조건에 대한 연구)

  • 이철구;서성원;채병대;남복현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.57-62
    • /
    • 2001
  • Recently, it has increased that the importance of gas pressure weldment of steel bars in large construction bars. But there has hardly been any studies about it. Therefore we need more research. SD40 steel bar (32mm in diameter) which has been practically used at construction sites are tested about tension, bonding, fatigue, a macro structure and micro structure at foil gitudinal section and hardness to fed out the mechanical property and best welding ranges in some cases of mechanical cut and gas cut before gas pressure welded. It is that a gas-pressure welded zone of steel bar where was cleaned of impurities in way of two-upsetted method is more excellent bending and tension property than the regulation of KD D 0244. Also gas cut bars gained hardness from the heat affected zone so. In conclusion, to improve the weldability of steel bars, it is considered best to clean mechanically cut sutra- faces and then weld them by a method of 2 step upset way.

  • PDF

The Magnetic Properties of Electrical Steel for Rotating Machine according to the Specimen

  • Choi, Yun-Yong;Chin, Jun-Woo;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.209-214
    • /
    • 2016
  • This paper analyzes the magnetic property according to the machined shape of steel material with non-oriented silicon steel (50PN470/50A470), that is most commonly used in the design of electrical equipment. Toward this end, specimens were produced and divided into Bar-Specimen (Epstein Frame Tester) and Ring-Specimen (Toroidal Ring Tester). The characteristics of the electrical Silicon steel were measured using the instruments solely dedicated to measuring each specimen. The core loss of the Bar-Specimen, which is commonly used, was found to be less than that of the Ring-Specimen. This is a very important design factor in achieving the objectives of improving the product efficiency and predicting the performance of electrical equipment. It serves as a critical point of view in order to reduce the error between design value and product value. A comparative analysis was conducted regarding various characteristics (Hysteresis, B-H characteristic, Iron loss, Minor loop, Coercive force, Residual magnetic flux density, etc.) of the electrical silicon steel considered in the design of the electrical equipment according to the specimen.

Experimental study on two types of new beam-to-column connections

  • Ma, Hongwei;Jiang, Weishan;Cho, Chongdu
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.291-305
    • /
    • 2011
  • The new structure consisting of continuous compound spiral hoop reinforced concrete (CCSHRC)column and steel concrete composite (SCC) beam has both the advantages of steel structures and concrete structures. Two types of beam-to-column connections applied in this structural system are presented in this paper. The connection details are as follows: the main bars in beam concrete pass through the core zone for both types of connections. For connecting bar connection, the steel I-beam webs are connected by bolts to a steel plate passing through the joint while the top and bottom flanges of the beams are connected by four straight and two X-shaped bars. For bolted end-plate connection, the steel I-beam webs are connected by stiffened extended end-plates and eight long shank bolts passing through the core zone. In order to study the seismic behaviour and failure mechanisms of the connections, quasi-static tests were conducted on both types of full-scale connection subassemblies and core zone specimens. The load-drift hysteresis loops show a plateau for the connecting bar connection while they are excellent plump for bolted end-plate connection. The shear capacity formulas of both types of connections are presented and the values calculated by the formula agree well with the test results.

Effect of TempCore Processing on Microstructure and Mechanical Properties of 700 MPa-Grade High-Strength Seismic Resistant Reinforced Steel Bars (700 MPa급 고강도 내진 철근의 미세조직과 기계적 특성에 미치는 템프코어 공정의 영향)

  • Shin, S.H.;Kim, S.K.;Lim, H.G.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.30 no.2
    • /
    • pp.91-98
    • /
    • 2021
  • The present study deals with the microstructure and mechanical properties of 700 MPa-grade high-strength seismic resistant reinforced steel bars fabricated by various TempCore process conditions. For the steel bars, in the surface region tempered martensite was formed by water cooling and subsequent self-tempering during TempCore process, while in the center region there was ferrite-pearlite or bainite microstructure. The steel bar fabricated by the highest water flow and the lowest equalizing temperature had the highest hardness in all regions due to the relatively fine microstructure of tempered martensite and bainite. In addition, the steel bar having finer microstructures as well as the high fraction of tempered martensite in the surface region showed the highest yield and tensile strengths. The presence of vanadium precipitates and the high fraction of ferrite contributed to the improvement of seismic resistance such as high tensile-to-yield strength ratio and high uniform elongation.

Bond Strength of Reinforcing Steel to High Strength, High Flow Belite Concrete (고강도, 고유동 Belite 콘크리트의 부착성능)

  • 김상준;조필규;이세웅;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.653-660
    • /
    • 1998
  • Bond strength of reinforcing bar to high-performance concrete using belite cement is explored using beam end test specimen. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete covers. Specimen failed in the typical brittle bond failure splitting the concrete cover as the wedging action. The test results show that the specimens with belire cement concrete show higher bond strength than those with portland cement concrete. Bond strength of the top bar is less than bond strength of bottom bar, but the top bar factor satisfies the modification factor for top reinforcement. The results also show that the bond strength is function of the square root of concrete compressive strength and cover thickness. The recently developed high-strength and high-slump concrete with belite cement performs well in terms of bond strength to reinforcing steel.

  • PDF

A Study on Detecting Steel Bars Embedded inside Concrete using Ground Penetrating Radar (레이더를 이용한 콘크리트 내 철근탐사에 관한 기초연구)

  • 이지훈;임홍철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.785-790
    • /
    • 1998
  • Ground Penetrating Radar (GPR) is a powerful tool with a wide range of applications in the nondestructive testing of concrete. It's useful for the detection of steel bars and delaminations embedded inside concrete, nondestructively. The purpose of this study is to detect a reinforced bar embedded inside concrete and to determine the range of application using GPR. A concrete specimen used for this study has a 25mm diameter steel bar and it's dimensions are 1,000 mm (L)× 1,000 mm(W)×280 mm(D). The advantages and limitations of GPR in these applications for concrete are also discussed.

  • PDF

FE simulation for the Reconstruction of Deceleration Profile in Steel Bar Breaking System (강철봉 제동 시스템에서의 감속파형 재현을 위한 유한 요소 해석)

  • Lee, J.K.;Suk, H.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.213-216
    • /
    • 2008
  • Sled test id widely used to evaluate the performance of occupant's safety system in frontal crash environment without having to conduct a full-scale crash test. Steel bar breaking system is used to generate deceleration profile which is experienced by passengers in frontal crash. In this study, deformation analyses of steel bars were conducted using a commercial FE code. Several guidelines were proposed to improve the accuracy of simulation.

  • PDF