• Title/Summary/Keyword: Steel Strip

Search Result 317, Processing Time 0.022 seconds

Application of the Preliminary Displacement Principle to the Temper Rolling Model

  • Lee, Won-Ho;Yuli Liu
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.225-231
    • /
    • 2001
  • A mathematical model for the analysis of roll gap phenomena in the strip temper rolling process is described. A new approach to solve the roll indentation and diverging problem in modeling of severe temper rolling cases is obtained by adopting the preliminary displacement principle of two contacted rough bodies to describe the friction behavior in the roll gap. The mechanical peculiarities of the temper rolling process, such as a high friction value with high roughness rolls and a non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central preliminary displacement zone etc., are all taken into account. The deformation of work rolls is calculated with the influence function method and an arbitrary contact are shape is permitted. The strip deformation is modeled by the slab method and the entry and exit elastic deformation zones are included. The preliminary displacement principle is used to determine the boundaries and to calculate the friction of the central preliminary displacement zone. The model is calibrated against the production mill data and installed in the setup computer of a temper rolling mill in POSCO. The validity and precision of the model have been proven through a comparison of the measured roll forces and the predicted ones.

  • PDF

A study on the characteristics of hydraulic automatic gauge control system for a reversing cold mill (유압압하식 자동두께제어장치의 특성에 관한 연구)

  • Kim, Soon Kyung;Jeon, Eon Chan;Kim, Moon Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.49-55
    • /
    • 1996
  • Recently, the necessity for more accurate automatic gauge control has increased of customers' requirement for cold rolled steel sheets with thinner gauge and better gauge quality. Therefore, many cold rolling mills replaced its electric screw down automatic gauge control system with a new hydraulic automatic gauge control system, to ensure closer gauge tolerance. In this paper, The performance of a hydraulic automatic gauge control system for cold rolling has been investigated under industrial conditions. It was investigated that variation of gauge deviation according to the final products thickness, cold rolling speed and pass number, in the actual rolling mill. As a result, it was found that the system enables strip thickness variation to be reduced substantially and caused by poor gauge deviation have been drastically decreased. The test results are as following. The more the exit steel strip thickness is thick, the smaller the aguge deviation rate is large, and the more it is thin, the large the gauge deviation rate is large. Because the gauge deviation is larger at accleration speed and deceleration speed than steady speed, so automatic gauge control system is better to adopt over 50m/min. automatic gauge control system reduces rapidly large thickness deviation.

  • PDF

Seismic retrofit of a steel-reinforced concrete hospital building using continuous energy-dissipative steel columns

  • Massimiliano Ferraioli;Biagio Laurenza;Angelo Lavino;Ciro Frattolillo;Gianfranco De Matteis
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.467-488
    • /
    • 2023
  • Seismic retrofit of an existing steel-reinforced concrete hospital building that features innovative use of a continuous energy-dissipative steel column (CEDC) system is presented in this paper. The special system has been adopted to provide an efficient solution taking into account the difficulties of applying traditional intervention techniques to minimize the impact on architectural functionality and avoid the loss of building function and evacuation during the retrofit implementation. The lateral stiffness and strength of the CEDC system were defined based on the geometric and mechanical properties of the steel strip dampers. The hysteretic behavior under cyclic loadings was defined using a simplified numerical model. Its effectiveness was validated by comparing the results of full-scale experimental data available from the literature. All the main design considerations of the retrofitting plan are described in detail. The effectiveness of the proposed retrofitting system was demonstrated by nonlinear time-history analyses under different sets of earthquake-strong ground motions. The analysis results show that the CEDC system is effective in controlling the deformation pattern and significantly reducing damage to the existing structure during major earthquakes.

Development of Perforating Die for Manufacturing Fine Multi-perforated type Nail Files (미세 다수공 타입의 네일파일 제조용 퍼퍼레이팅 금형 개발)

  • 김세환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.4
    • /
    • pp.309-314
    • /
    • 2004
  • 0.5mm thick steel is used to manufacture nail files. The first process is blanking and the second process is making about 300 holes of 0.8-l.0mm in diameter. This process depends mainly on etching which takes 33% of manufacturing cost and it can make manufacturing cost rise. The residual etching reagent is not environmentally friendly and the steel material is apt to rust as well. To solve these problems, researches on the following subjects are performed: proper material to prevent from rusting and strip layout strategies in stamping to replace etching process with press process which makes use of die. And new quill type punch is developed to replace the regular standard punch, one of the die parts, which frequently get broken while working. And these researches and developments lead to develop a progressive perforating die.

  • PDF

ELECTROSLAG STRIP OVERLAY OF PIPE, FITTINGS, AND PRESSURE VESSELS

  • Dan, Capitanescu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.355-360
    • /
    • 2002
  • ElectroSlag Strip Overlaying (ESSO) process has been around since 1970. ESSO process had limited acceptance due to a few problems associated with the use of this process in its very early stage. Limited knowledge and, most significantly, poor quality of the equipment and welding flux gave the ESSO process a bad name. However, this process is well accepted today and used in North America, Europe and Japan. The ESSO process provides low dilution overlays at high deposition rates, excellent and consistent deposit chemistry with excellent surface quality, and virtually no defects. Capitan has taken this process one step further through extensive research and development of the process itself as well as the equipment. The improvement brought to the process warranted the issuance in May 2000 of an US patent. This study demonstrates the feasibility of this process with immediate positive production results. The main achievements of this work are as follows: $\textbullet$ Development of six various strip-flux combinations on three different base materials: carbon steel, $\frac{1}{4}$ Cr/.5 Mo and 2 $\frac{1}{4}$ Cr/l Mo, fully tested with: penetrant, ultrasound, bends, hardness, overlay chemistry, corrosion and hydrogen disbonding. $\textbullet$ 12" dia. 90 hot formed elbows from straight pipe electroslag overlayed with "1 layer" and "2 layer" Alloy 625 $\textbullet$ a very unique development of miniaturized overlaying equipment able to perform overlay in pipe with diameters as low as 10" (254 mm). This development has large applications in the field of offshore, petrochemical, refining, pulp and paper and power generation industries. The aftermath of this development was its immediate acceptance by major end users with the completion of four projects of overlayed pipe in the USA and Far East Asia.

  • PDF

Effect of Crack Control Strips at Opening Corners on the Strength and Crack Propagation of Downsized Reinforced Concrete Walls (축소 철근콘크리트 벽체의 내력과 균열진전에 대한 개구부모서리 균열제어 띠의 영향)

  • Wang Hye-Rin;Yang Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.40-47
    • /
    • 2022
  • The present study aimed to examine the effectiveness of different techniques for controlling the diagonal cracks at the corners of openings on the strength, deformation, and crack propagation in reinforced concrete walls. The crack control strip proposed in this study, the conventional diagonal steel reinforcing bars, and stress-dispersion curved plates were investigated for controlling the diagonal cracks at the opening corners. An additional crack self-healing function was also considered for the crack control strip. To evaluate the volume change ratio and crack width propagation around the opening, downsized wall specimens with a opening were tested under the diagonal shear force at the opening corner. Test result showed that the proposed crack control strip was more effective in reducing the volume change and controlling the crack width around the opening when compared to the conventional previous methods. The crack control strip with crack healing feature displayed the superior performance in improving the strength of the wall and reducing the crack width while healing cracks occurred in the previous tests.

Measurement and assessment of imperfections in plasma cut-welded H-shaped steel columns

  • Arasaratnam, P.;Sivakumaran, K.S.;Rasmussen, Kim J.R.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.531-555
    • /
    • 2006
  • H-shaped welded steel column members are fabricated by welding together pre-cut flanges and the web. Modern fabricators are increasingly using plasma-cutting technique instead of traditional flame cutting. Different fabrication techniques result in different degrees of geometric imperfections and residual stresses, which can have considerable influence on the strength of steel columns. This paper presents the experimental investigation based temperature profiles, geometric imperfections, and built-in residual stresses in plasma cut-welded H-shaped steel column members and in similar flame cut-welded H-shaped steel columns. Temperature measurements were taken during and immediately after the cutting operations and the welding operations. The geometric imperfections were established at closely spaced grid locations on the original plates, after cutting plates into plate strips, and after welding plate strips into columns. Geometric imperfections associated with plasma cut element and members were found to be less than those of the corresponding elements and members made by flame cutting. The "Method of Section" technique was used to establish the residual stresses in the plate, plate strip, and in the welded columns. Higher residual stress values were observed in flame cut-welded columns. Models for idealized residual stress distributions for plasma cut and flame cut welded sections have been proposed.

Experimental and numerical studies on concrete encased embossments of steel strips under shear action for composite slabs with profiled steel decking

  • Seres, Noemi;Dunai, Laszlo
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.39-58
    • /
    • 2011
  • The subject of the ongoing research work is to analyze the composite action of the structural elements of composite slabs with profiled steel decking by experimental and numerical studies. The mechanical and frictional interlocks result in a complex behaviour and failure under horizontal shear action. This is why the design characteristics can be determined only by standardized experiments. The aim of the current research is to develop a computational method which can predict the behaviour of embossed mechanical bond under shear actions, in order to derive the design characteristics of composite slabs with profiled steel decking. In the first phase of the research a novel experimental analysis is completed on an individual concrete encased embossment of steel strip under shear action. The experimental behaviour modes and failure mechanisms are determined. In parallel with the tests a finite element model is developed to follow the ultimate behaviour of this type of embossment, assuming that the phenomenon is governed by the failure of the steel part. The model is verified and applied to analyse the effect of embossment's parameters on the behaviour. In the extended investigation different friction coefficients, plate thicknesses, heights and the size effects are studied. On the basis of the results the tendencies of the ultimate behaviour and resistance by the studied embossment's characteristics are concluded.

Roll Force Prediction of High-Strength Steel Using Foil Rolling Theory in Cold Skin Pass Rolling (고강도강의 냉간 조질 압연 시 호일 압연이론을 이용한 압연하중의 예측)

  • Song, Gil Ho;Jung, Jae Chook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.271-277
    • /
    • 2013
  • Skin pass rolling is a very important process for applying a certain elongation to a strip in the cold rolling and annealing processes, which play an important role in preventing the stretching of the yield point when the material is processed. The exact prediction of the rolling force is essential for obtaining a given elongation with the steel grade and strip size. Unlike hot rolling and cold rolling, skin pass rolling is used to apply an elongation of within 2% to the strip. Under a small reduction, it is difficult to predict the rolling force because the elastic deformation behavior of the rolls is complicated and a model for predicting the rolling force has not yet been established. Nevertheless, the exact prediction of the rolling force in skin pass rolling has gained increasing importance in recent times with the rapid development of high-strength steels for use in automobiles. In this study, the possibility of predicting the rolling force in skin pass rolling for producing various steel grades was examined using foil rolling theory, which is known to have similar elastic deformation behavior of rolls in the roll bite. It was found that a noncircular arc model is more accurate than a circular model in predicting the roll force of high-strength steel below TS 980 MPa in skin pass rolling.

Comparison of Crown Shape and Amount of Tooth Reduction for Primary Anterior Prefabricated Crowns (유전치 기성 크라운의 형태 및 치질 삭제량 비교)

  • Kim, Soyoung;Lim, Youjin;Lee, Sangho;Lee, Nanyoung;Jih, Myeongkwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.64-75
    • /
    • 2019
  • The purpose of this study was to obtain instructions for size selection of prefabricated crown and tooth reduction by 3-dimensional analysis of the size and shape of the maxillary primary central and lateral incisors and prefabricated crowns (celluloid strip, resin veneered stainless steel, and zirconia crowns). The maxillary primary central and lateral incisors of 300 Korean children was scanned with three types of prefabricated crown to create standard three-dimensional tooth models and prefabricated crowns. The shapes of the prefabricated crowns and natural teeth were compared according to four parameters (mesio-distal width, height, labio-palatal width, and labial surface curvature coefficient) and calculated the amount of tooth reduction required for each prefabricated crown. The size 2 resin veneered stainless steel crown, size 1 zirconia crown, and size 2 celluloid strip crown were most similar in shape to the primary central incisor. The size 3 rein veneered stainless steel crown, size 2 zirconia crown, and size 3 celluloid strip crown were most similar to the primary lateral incisor. The amount of tooth reduction was similar in both maxillary primary central and lateral incisors. The incisal reduction was greatest for the zirconia crown. At the proximal surface, the zirconia and celluloid strip crowns required a similar amount of tooth reduction, but more than the resin veneered stainless steel crown. The labial surface reduction was greatest for the zirconia crown. The degree of lingual surface reduction was not significant among the three prefabricated crowns. Among the assessment parameters, mesio-distal crown width was the most important for choosing a prefabricated crown closest to the actual size of the natural crown.