• Title/Summary/Keyword: Steel Slag

Search Result 438, Processing Time 0.028 seconds

Strength Development Characteristics of Clay Stabilized with Electric Furnace Steel Slag (전기로 제강슬래그로 안정화된 연약점토의 강도 발현 특성)

  • Hyeongjoo Kim;Taegew Ham;Taewoong Park;Taeeon Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.29-37
    • /
    • 2024
  • This study aimed to investigate the changes in chemical components that occur when weak clay is mixed with steel slag modified with calcium oxide, and to understand the expression characteristics of compressive strength according to hydrophilicity and curing time. XRF testing, SEM imaging, vane shear strength and uniaxial compressive strength testing were conducted. Calcium (Ca) released from the steel slag increases the Ca content in clay by increasing the number of crystal particles and forming a coating layer known as calcium silicate hydrate (CaO-SiO2-H2O) through chemical reactions with SiO2 and Al2O3 components. The weak clay stabilized with steel slag is classified into an initial inactive zone where strength relatively does not increase and an activation zone where strength increases over curing time. The vane shear strength of the initial inactive area was found to be 4.4 to 18.4 kN/m2 in the state of the weight mixing ratio Rss 30% (steel slag 30% + clay 70%). In the case of the active area, the maximum uniaxial compressive strength increased to 431.8 kN/m2 after 480 hours of curing time, which increased due to the apparent adhesion strength of clay through pozzolanic reaction. Therefore, considering the strength expression characteristics of stabilized mixed clay based on the mixing ratio (Rss) during the recycling of steel slag can enhance its practicality in civil engineering sites.

Leaching and Acute Toxicity Test of Steel-making Slags for Media Contact Recycling (제강슬래그의 매체접촉형 재활용에 따른 중금속 용출특성 및 물벼룩 생태독성 평가)

  • Donghyun Kim;Bong Seok Cho;Won Sik Shin
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.72-83
    • /
    • 2024
  • Most of the slags generated from steel-making industry in Korea are recycled into media-contact aggregates such as fill and cover materials. For their use as media-contact aggregates, the slags must meet not only the waste quality criteria, but also the Daphnia magna acute toxicity test criteria. In this study, Korean Leaching Test ES 06150.e (Korea), Japanese Leaching Test JIS K 0058-1(Japan), Detuch Leaching Test DIN 19529 (Germany), Toxicity Characteristic Leaching Procedure (USA) were conducted for batch leaching test of slags from 6 Korean steel-making companies. In addition, Korean Standard up-flow percolation test (ES 06151.1) mimicking field conditions was conducted to assess the impact of the slag leachate on the surrounding environment indirectly. Heavy metals such as Cr6+ and Zn2+ were detected from both extractant and leachate samples, but all of them did not exceed waste quality criteria of each country. However, Daphnia magna acute toxicity tests using the leachate samples from up-flow percolation test with slag alone and slag/natural soil conditions exceeded ecotoxicity standard (TU=2) due to their high pH (11.3-12.5). After neutralizing the pH of the slag leachate to 6.5~8.5, the Daphnia magna mortality and immobilization were reduced to satisfy ecotoxicity standard. As the reducing pH of slag leachate would be extremely difficult, appropriate recycling management considering the physicochemical characteristics of he slags should be stuided further.

A study on the slag-thickness measuring system for steel making foundaries by using a resistivity detector. (저항센서를 이용한 제강용 슬래그 두께측정 방안 연구)

  • Kim, Chan-Wook;Im, Jong-In
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.141-145
    • /
    • 2000
  • In order to measure the thickness of the slag layer on the molten metal in the melting vessels for steel making foundaries, we manufactured the slag-thickness measuring system consisting of the probe and its driving system, which is based on the principle of detecting the change in the electrical resistivity. Experimental results show that there is a very wide difference of the electrical resistivity by the order of about $10^3$ between the molten metal and the hot slag and, hence, the air/slag and slag/molten metal interface can be exactly detected with the use of the probe which can be moved toward the melt. Therefore, it can be concluded that the proposed scheme of the slag measurement system in this study is Proven to be excellent in its efficiency and accuracy.

  • PDF

Unconfined Compressive Strength of Reduced Slag-Mixed Clay (환원슬래그 혼합점토의 일축압축강도 특성)

  • Cho, Minjae;Yoon, Yeowon;Kim, Jaeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.33-39
    • /
    • 2012
  • With the increase of steel production research interest on the recycling of slag as a by-product also increases steadily. Currently in Korea a lot of researches on blast-furnace slag have been made. However, the researches on the steel slag have been rarely made. Also, a research of steel slag, especially the use of oxidation furnace slag as aggregates for concrete progress, is performing actively, but the research results on the furnace slag are almost nothing. Recently, the research about the furnace slag as backfill material and embankment material confirmed the possibility of the clay soil amendment. Therefore, the object of this study is to review the possibility as civil engineering materials for soil improvement and to find the optimum mixture ratio of furnace slag. This research analyzed the ingredient component of the reduced slag by SEM, XRF, XRD tests and examined the strength increase using unconfined compression tests when the clay and reduced slag are mixed each other. Through this test, the definite strength increase is confirmed according to the mixture of the reduced slag and the possibility of soil improvement is also confirmed based on this result. The object of the study is both utilizing the by-product for civil engineering purpose and effective recycling by the application of the furnace slag for soil improvement.

PARTITIONING RATIO OF DEPLETED URANIUM DURING A MELT DECONTAMINATION BY ARC MELTING

  • Min, Byeong-Yeon;Choi, Wang-Kyu;Oh, Won-Zin;Jung, Chong-Hun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.497-504
    • /
    • 2008
  • In a study of the optimum operational condition for a melting decontamination, the effects of the basicity, slag type and slag composition on the distribution of depleted uranium were investigated for radioactively contaminated metallic wastes of iron-based metals such as stainless steel (SUS 304L) in a direct current graphite arc furnace. Most of the depleted uranium was easily moved into the slag from the radioactive metal waste. The partitioning ratio of the depleted uranium was influenced by the amount of added slag former and the slag basicity. The composition of the slag former used to capture contaminants such as depleted uranium during the melt decontamination process generally consists of silica ($SiO_2$), calcium oxide (CaO) and aluminum oxide ($Al_2O_3$). Furthermore, calcium fluoride ($CaF_2$), magnesium oxide (MgO), and ferric oxide ($Fe_2O_3$) were added to increase the slag fluidity and oxidative potential. The partitioning ratio of the depleted uranium was increased as the amount of slag former was increased. Up to 97% of the depleted uranium was captured between the ingot phase and the slag phase. The partitioning ratio of the uranium was considerably dependent on the basicity and composition of the slag. The optimum condition for the removal of the depleted uranium was a basicity level of about 1.5. The partitioning ratio of uranium was high, exceeding $5.5{\times}10^3$. The slag formers containing calcium fluoride ($CaF_2$) and a high amount of silica proved to be more effective for a melt decontamination of stainless steel wastes contaminated with depleted uranium.

Guideline for Media-contact Recycling of Steel-Making Slag: Leaching Tests and Comparison of International Recycling Guidelines (제강슬래그의 친환경적 매체접촉형 재활용 방안: 용출시험 및 국내외 재활용 지침 비교)

  • Donghyun Kim;Inseong Hwang;Won Sik Shin
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.39-50
    • /
    • 2024
  • Slags from steel-making industry have been recycled at a target rate of 95% and most of them are recycled as media-contact type such as fill and cover materials in Korea. However, as they contain free phase CaO during their generation, they may not only expand and collapse upon contact with water, but high pH leachate and heavy metals leaching may occur. In this study, the Korean leaching procedure (KLP) and up-flow percolation test were performed for the samples collected from 17 steel-making production plants in Korea. The waste quality criteria were met in all tests, but pH of the samples was above 10. There are no regulations on the pH of leachate in most of the countries, however, Germany, Italy, and Australia have set a pH range of 10 to 13 for the leachates. Although slag leachate cannot be considered hazardous based only on its high pH, it is necessary to reduce the pH of leachate to minimize the impact on the surrounding environment. Furthermore, conflicting regulations on wastes handling and management in Korea created confusion on the types of wastes subject to recycling. Therefore, an appropriate management plan for steel-making slags needs to be established. To this end, this study attempted to provide a guideline for managing steel-making slag waste by considering international guidelines and current management practices in Korea.

Evaluation of Durability of Slag Concrete by Marine Environment Exposure (해양환경 폭로에 의한 슬래그 콘크리트의 내구성 평가)

  • Kim, Hyun-Jin;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Kim, Hong-Seop;Lee, Bo-Kyeong;Kim, Rae-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.111-112
    • /
    • 2015
  • There is high possibility of steel corrosion on the reinforced concrete exposed to marine environment by chloride ion penetration. And it show a big difference of concrete durability under conditions of splash zone, tidal zone, and immersion zone. Therefore, in this paper, half-cell potential and chloride ion penetration depth was measured to evaluate the durability of slag concrete by marine exposure experiment. As a result, SC70 specimen showed no steel corrosion, regardless of the marine exposed conditions. Also, a deterrent effect on chloride ion penetration by replacement of slag in tidal zone and immersion zone could be confirmed.

  • PDF

Strength Properies of Concrete Using Waste Slag Aggregates as the Products of Steel Industry (산업폐기물인 제강 슬래그쇄석을 이용한 콘크리트의 강도특성)

  • Lee, Bong-Hak;Kim, Tae-Kyung
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.45-50
    • /
    • 1996
  • An experimental study os performed to examine the feasibility of using wastes steel furnace slag construction materials and its utility as a replacement for the natural resources to prevent the economic loss was investigated. A half factorial exprements was performed with the variables of W/C ratio, S/A, Coarse aggrigate/Slag ratio and slump as a preliminary study for optimum mix design of concrete. The results show that the W/C ratio and Slump ratio are the most important factor to the concrete strength. The substitute of waste Slag up to 100% has little influence, saying that it can substitute the coarse aggregate without damaging the concrete properties.

  • PDF

Study on the Reduction of Molten EAF Slag (용융 전기로 슬래그의 환원반응에 관한 연구)

  • Joo, Seong-Woong;Shin, Jong-Dae;Shin, Dong-Kyung;Hong, Seong-Hun;Ki, Jun-Sung;Hwang, Jin-Il;You, Byung-Don
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.753-761
    • /
    • 2012
  • The reduction behavior of low level oxides such as (T.Fe), (MnO) and ($P_2O_5$) in molten EAF slag was investigated using commercial reductants. In an air atmosphere, the slag volume increased and the reduction rate of the slag was very low due to the oxidation loss of reductants by oxygen in the air. The reduction rate of the slag was also low when a commercial reductant was used alone in an Ar gas atmosphere. The reason is probably because the material transfer through the interface between the slag and reductant is difficult due to the formation of high melting point oxide. When reductants were mixed with burnt lime in order to form low melting point reaction products, the reduction rate of the slag increased up to the range of 45-70%. By using the mixtures of reductants and burnt lime so as to form a low melting point slag at the reaction end, the reduction rate of the slag was improved up to 60-85%.

Ecological Effects of Slag Extracts on the Initial Life Cycle of the Rotifer Brachionus plicatilis and Benthic Copepod Tigriopus japonicus (윤충류 Brachinus plicatilis와 저서성 요각류 Tigriopus japonicus의 초기생활사에 미치는 슬래그 추출액의 생태 영향)

  • Yoon, Sung-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.490-499
    • /
    • 2016
  • In this study, the marine ecological impacts of dephosphorized slag and steel slag on the initial life cycle of the rotifer Brachionus plicatilis and benthic copepod Tigriopus japonicus (in marine trophic structure as a first consumer) exposure to slag extracts have been considered using a marine ecotoxicological assessment. In the results of a screen test on slag extracts, the pH of an undiluted solution was measured to have high alkalinity (pH 8.89-12.16), but a toxic reaction to this undiluted solution before and after aging was divided according to test species. For non-aged slag, the toxic effect ($LC_{50}$) of neonate on B. plicatilis was seen to be severe with dephosphorized slag (20.8 %) than steel slag (63.8 %) with under pH-uncontrolled conditions. The toxic values of dephosphorized and steel slag were estimated to be 35.3 % and 36.0%, respectively, for nauplius with T. japonicus. However, the toxicity of slag extracts before and after aging were different for T. japonicus than for B. plicatilis based on the characteristics of the test materials, with pH-controlled conditions. In conclusion, the results of this study suggest that slag can be relatively stable after aging and may not be likely to influence marine environments, even given repetitive extracting under pH-uncontrolled conditions. This study confirms that a marine ecotoxicological assessment method applied to mechanically activated samples can give an idea of the resistance a marine environment has against the introduction of hazardous materials due to precipitation and weathering.