• Title/Summary/Keyword: Steel Rolling

Search Result 563, Processing Time 0.027 seconds

Deformation Behavior & Rolling Effect on the Hot Rolling of High Nitrogen Stainless Steel (고질소강의 열간압연시 변형거동 및 압연효과)

  • Kim, Y.D.;Kim, D.K.;Lee, J.W.;Bae, W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.329-332
    • /
    • 2008
  • Nowadays, It is required human body-friendly, good mechanical properties, and economical efficiency material, simultaneously. The material to meet above requirement condition rear up high nitrogen stainless steel(HNS). However, HNS have a lot of problem such as poor workability, hot crack sensitivity. So, It is needed the condition of plastic working to overcome above many problem. In this study, VIM ingot with 100kg was made by pressurized vacuum induction melting. And then, The slab perform for hot rolling was prepared by open-die forging. Hot rolling process was performed by computer simulation according to change of height reduction, rolling temperature, heating numbers, rolling pass and so forth. The results of analysis were investigated between analysis and lab-scale rolling product.

  • PDF

Effect of Lubrication during Hot Rolling on the Evolution of Textures at the surface of 18%Cr Ferritic Stainless Steel Sheet (페라이트계 스테인리스 강의 열간압연 시 표면 층의 집합조직 발달에 미치는 윤활의 영향)

  • Pyon, Y.B.;Kang, H.G.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.411-414
    • /
    • 2008
  • In order to study the effect of lubrication during hot rolling, ferritic stainless steel (FSS) sheet were hot-rolled with and without application of lubrication. The effect of two hot rolling processes on the evolution of texture and microstructure after hot rolling, cold rolling and subsequent recrystallization annealing was studied by means of macro-texture analysis and microstructure observations. After hot rolling, the specimen rolled with lubrication showed rolling textures at the sheet surface, while the specimen rolled without lubrication displayed shear textures in the outer layers of the sheet. Hot rolling with lubrication was beneficial to the formation of strong recrystallization textures at sheet surface. However, hot rolling with lubrication led to the formation of orientation colonies in outer thickness layers of the recrystallized sheet.

  • PDF

Analysis of the Metal Flow in H-Beam Rolling using Beam Blank (빔 블랑크를 이용한 H 형강 압연 거동 연구)

  • Kim, J.M.;Choi, W.N.;Park, C.S.;Kim, K.W.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.383-388
    • /
    • 2013
  • Metal flow of the beam blank during H-beam rolling was examined in order to correlate the rolling defects with the beam blank configuration. For this purpose, H-beam rolling was performed on the beam blank where stainless steel bolts were inserted as the marker at the web and flange. The positional variation of the marker was monitored at each rolling pass, and the result was compared with the 3D FEM simulation employing the point tracking function. The simulation results were reasonably agreed with the experimental within the error of 0.5~1mm on both web and flange of the H-beam. It is anticipated that the 3D FEM simulation employing the point tracking function provides the guidance information on analyzing the correlation between the rolling defects and the beam blank configuration in H-beam rolling.

Mathematical Model for Cold Rolling and Temper Rolling Process of Thin Steel Strip

  • Lee, Won-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1296-1302
    • /
    • 2002
  • A mathematical model for cold rolling and temper rolling process of thin steel strip has been developed using the influence function method. By solving the equations describing roll gap phenomena in a unique procedure and considering more influence factors, the model offers significant improvements in accuracy, robustness and generality of the solution for the thin strip cold and temper rolling conditions. The relationship between the shape of the roll profile and the roll force is also discussed. Calculation results show that any change increasing the roll force may result in or enlarge the central flat region in the deformation zone. Applied to the temper rolling process, the model can well predict not only the rolling load but also the large forward slip. Therefore, the measured forward slip, together with the measured roll force, was used to calibrate the model. The model was installed in tile setup computer of a temper rolling mill to make parallel setup calculations. The calculation results show good agreement with the measured data and the validity and precision of the model are proven.

Fabrication of stainless clad steel by hot rolling (열간압연에 의한 스테인레스 클래드강 제조)

  • 김승태;권숙인
    • Journal of Welding and Joining
    • /
    • v.8 no.2
    • /
    • pp.70-79
    • /
    • 1990
  • Stainless clad steels were made through hot rolling process. Backing plates employed in this study were HSLA steel and mild steel. The shear bond strength increased with an increase of the soaking temperature and time. It was also found that the shear bond strength increased with an increase of the reduction ratio. The threshold deformation was observed to be 20% and 10% respectively when the soaking conditions of 15 min. at 900.deg. C and 30 min. at 1000.deg. C were applied. Either the rolling or the transverse direction did not give any significant difference in the shear bond strength. Stainless steel-HSLA steel was superior to stainless steel-mild steel in the same range of magnitude. Because the above experimental results were in contrary to the existing mechanisms, the new model was proposed to describe the bonding mechanism and the void formation.

  • PDF

Mechanism Study of Sticking Occurring during Hot Rolling of Ferritic Stainless Steel (페라이트계 스테인리스강의 열간압연 시 발생하는 Sticking 기구 연구)

  • Ha, Dae Jin;Sung, Hyo Kyung;Lee, Sunghak;Lee, Jong Seog;Lee, Yong Deuk
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.737-746
    • /
    • 2008
  • Mechanisms of sticking phenomena occurring during hot rolling of a modified STS 430J1L ferritic stainless steel have been investigated in this study by using a pilot-plant-scale rolling machine. As the rolling pass proceeds, the Fe-Cr oxide layer formed in a reheating furnace is destroyed, and the destroyed oxides penetrate into the rolled steel to form a thin oxide layer on the surface region. The sticking does not occur on the surface region containing oxides, whereas it occurs on the surface region without oxides by the separation of the rolled steel at high temperatures. This indicates that the resistance to sticking increases by the increase in the surface hardness when a considerable amount of oxides are formed on the surface region, and that the sticking can be evaluated by the volume fraction and distribution of oxides formed on the surface region. The lubrication and the increase of the rolling speed and rolling temperature beneficially affect to the resistance to sticking because they accelerate the formation of oxides on the steel surface region. In order to prevent or minimize the sticking, thus, it is suggested to increase the thickness of the oxide layer formed in the reheating furnace and to homogeneously distribute oxides along the surface region by controlling the hot-rolling process.

Prediction of Recrystallization Behaviors in Steel Sheet during Hot Rolling Process (열간압연 중 발생하는 강판재 내의 재결정 거동 예측)

  • Lee, Jung-Seo;Park, Jong-Jin
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.150-157
    • /
    • 1998
  • Recently the SPPC technology is being developed in steel rolling industries for the purpose of enhancing mechanical properties of rolled sheets. The technology is to produce steel sheets with finer and more uniformly distributed grains by prediction of recrystallization behaviors and on-line control of rolling parameters during hot rolling process. In this study a finish rolling process was analyzed by a three-dimensional rigid-thermoviscoplastic finite element method and recrystallization behaviors of several locations in the sheet were predicted by Sellars equations. As a result it was found that the initial grain size of 84 ${\mu}m$ became $21-23\;{\mu}m\;20-22{\mu}m\;and\;18-20{\mu}m$ at front middle and end portions of the sheet respectively. It was also found that variations of the grain size became $$0.6{\sim}2{\mu}m\;and\;10{\mu}\mum$$ in thickness and width directions respectively.

  • PDF

Temperature Distribution of High Speed Tool Steel Rod During High Speed Hot Rolling Procedure (고속열간압연에서 고속도공구강 봉재의 온도분포 해석)

  • Jeong, Hyo Tae;Lee, Soo Yeon;Ha, Tae Kwon;Jung, Jae Young
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.150-158
    • /
    • 2008
  • The temperature distribution of high speed tool steel rod has been studied during high speed hot rolling procedures. The tool steel rod shows severe temperature gradient during rolling procedures and the temperature at the center of rod are much higher than that at the surface of rod. This temperature gradient accumulated after every rolling procedure and the center of rolled rod could be remelt in some procedures to cause inside defects. In this study, the temperature distribution was simulated using finite element method and the processing parameters such as rolling speed, cooling condition, have been discussed to prevent the temperature increases at the center of rod.

Analysis of Rolling Contact Surface on PM-High Speed Steel by X-ray Diffraction (구름접촉을 하는 분말고속도공구강의 X선을 이용한 표면성상해석)

  • 이한영;김용진;배종수
    • Tribology and Lubricants
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Recently, PM-high speed steel(PM-HSS) has reportedly been a good alternative material for rolling mill because of its superior performance to conventional HSS. This paper has been aimed to investigate the possibility for application to rolling contact element for PM-HSS by X-ray diffraction technique. The X-ray elastic constant for PH-HSS has been found by X-ray diffraction during the four-point bending test. Residual stress and half-value breadth on the contact surface during rolling contact fatigue process by X-ray diffraction have also been measured. The result of this study shows that the application of X-ray diffraction technique to PM-HSS could be as possible alternative material as conventional HSS. Half-value breadth on rolling contact surface by X-ray diffraction is not changed during rolling contact fatigue process. On the other hand, the residual stress is changed. This suggests that dislocation reaction has been hardly occurred in rolling contact, depending on super-saturated carbon in PM-HSS.

Technology of Stip Rolling of Shadow Mask Steel Plate By Reversing Cold Rolling Mill (가역식 냉간압연기의 Shadow Mask재 압연기술)

  • 김광수;박성권;이중웅;김종호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.403-411
    • /
    • 1999
  • The steel plate for shadow mask is used in a Cathode-ray tube of TV monitor and is the strictest product in surface quality because hundreds thousand of holes are perforated in a plane of 25 ${\times}$25 inches. To mass-produce this product, a reversible cold rolling mill for silicon steel was used and the rolling technology and the activity for quality improvement are described in this work. Because the steel plate is a mild steel, which is very sensitive to strip-breakage even in a low tension, we reset the minimum tension values matching to the operating conditions. The roll mark due to the multi-segmented araangement of shape controlling roll was prevented by hardening the intermediate shape controlling roll and by changing the existing working-roll into a HSS (Hig Speed Steel) roll. The scratch caused by the speed difference between a idle roll and a strip was prevented by increasing the roll roughness. With these activities, the steel plate for shadow mask can be stable. The continuous improvement of quality is, however, required for the customer satisfaction both of domestic and overseas market.

  • PDF