• Title/Summary/Keyword: Steel Reinforcement Bar

Search Result 231, Processing Time 0.023 seconds

Behavior of Concrete Bridge Deck Using Hybrid Reinforcement System (Hybrid Reinforcement System을 이용한 콘크리트 교량상판 슬래브의 거동)

  • Park Sang-Yeol;Cho Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.451-458
    • /
    • 2004
  • This study describes the basic concept and the applicability of Hybrid Reinforcement System using conventional steel reinforcing bars and Fiber Reinforced Polymer bars. The concrete bridge decks are assumed to be supported by beams and reinforced with two layers of reinforcing bars. In concrete bridge deck using HRS, the top tensile force for negative moment zone on beam supports is assumed to be resisted by FRP reinforcing bars, and the bottom tensile force for positive moment zone in the middle of hem supports is assumed to be resisted by conventional steel reinforcing bars, respectively. The FRP reinforcing bars are non-corrosive. Thus, the steel reinforcement is as far away as possible from the top surface of the deck and protected from intrusion of corrosive agent. HRS concrete bridge deck has sufficient ductility at ultimate state as the following reasons; 1) FRP bars have lower elastic modulus and higher ultimate strain than steel re-bars have, 2) FRP bars have lower ultimate strain if provided higher reinforcement ratio, 3) ultimate strain of FRP bars can be reduced if FRP bars are unbonded. Test results showed that FRP and HRS concrete slabs are not failed by FRP bar rupture, but failed by concrete compression in the range of ordinary reinforcement ratio. Therefore, in continuous concrete bridge deck using HRS, steel reinforcing bars for positive moment yield and form plastic hinge first and compressive concrete fail in the bottom of supports or in the top of the middle of supports last. Thus, bridge deck consumes significant inelastic strain energy before its failure.

Static Shear Strength of Cast-in Anchors with Stirrup Reinforcement (스터럽 보강 선설치 앵커의 정적 전단하중에 대한 저항 강도)

  • Park, Yong Myung;Jo, Sung Hoon;Kim, Tae Hyung;Kang, Choong Hyun;Kim, Jae Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • An experimental study was conducted to evaluate the static shear strength of stirrup-reinforced cast-in anchors. The test parameters considered herein are an existence of front bearing bar and concrete crack. M36 anchor was used with an edge distance of 180mm. HD-10 bars were used for all reinforcing bars and the stirrups were placed with 100mm spacing. The shear resistance increased by 16% when the front bearing bar was installed. Meanwhile, the resistance reduced only 5% in the cracked concrete compared with the uncracked concrete. The test results showed that ACI 318 and ETAG 001 specifications could estimate the shear strength of stirrup-reinforced anchors conservatively and a rational method was proposed. A consideration on the fracture strength of stirrup-reinforced anchor is also given.

Fatigue Behavior of Simply Supported Under Reinforcde Concrete Beams (과소철근콘크리트 단수보의 피로거동)

  • 변근주;김영진;노병철;장세창
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.41-48
    • /
    • 1991
  • In recent years, conskderable interest has developed in the fatigue strength of reinforced concrete members subjected to cyclic loading for the wide-spread adoption of ultimate strength design poecedures, the higher strength materials and the new recognition of the effect of repeated loading on structures such as bridges, concrete pavementes and offshore structures. In this study, a series of experiments is carried out to investigate the fatigue characteristics of deformed bars and underreinforced simply supported beams. The 69 reinforcing bar specimens with grade SD30 and designation of D16, D22, D25, and 24 beam specimens with D16 bars are prepared for this study. From these series of tests, it is found that I) a decrease of the bar deameter result in increased fatigue life, ii) the fatigue life of the bars embedded as main reinforcement within a concrete is more than that of bars in the air. iii) the fatigue strength at 2$\times$106 cycles of beams with steel ratio of 0.61% and 1.22% is 64.5% and 63.2% of the yielding strength, restectively. It is concluded that the low steel ratio has no significant effect on fatigue strength of underreinforced beams and the fatigue life of underreinforced concrete beams can be predicted conservatively by the fatigue life lf reinforcing bar.

  • PDF

Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.227-245
    • /
    • 2013
  • The term "constructability" in regard to cast-in-place concrete construction refers mainly to the ease of reinforcing steel placement. Bar congestion complicates steel placement, hinders concrete placement and as a result leads to improper consolidation of concrete around bars affecting the integrity of the structure. In this paper, a multi-objective approach, based on the non-dominated sorting genetic algorithm (NSGA-II) is developed for optimal design of reinforced concrete cantilever retaining walls, considering minimization of the economic cost and reinforcing bar congestion as the objective functions. The structural model to be optimized involves 35 design variables, which define the geometry, the type of concrete grades, and the reinforcement used. The seismic response of the retaining walls is investigated using the well-known Mononobe-Okabe analysis method to define the dynamic lateral earth pressure. The results obtained from numerical application of the proposed framework demonstrate its capabilities in solving the present multi-objective optimization problem.

Behavior According to Confinement of Compressive Concrete on Flexural Members Reinforced with FRP Bars (FRP bar를 주근으로 사용한 콘크리트 휨부재의 압축측 콘크리트 구속에 따른 거동)

  • Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.110-118
    • /
    • 2008
  • The use of FRP bar as reinforced concrete beams is considered as one of the most prominent solution that may overcome the corrosion of reinforcing steel bars. However, in the case of FRP reinforced concrete, both the reinforcing and the reinforced materials are brittle. For this reason, ductility of structures with FRP reinforcement is much less than that of structures with steel reinforcements. In this study, a method has been suggested to provide a meaningful quantification of ductility for concrete beams reinforced with FRP bars. This paper shows which the confinement to the compression concrete by the spiral can increase the ductility of FRP over-reinforced concrete beams.

Column-loss response of RC beam-column sub-assemblages with different bar-cutoff patterns

  • Tsai, Meng-Hao;Lua, Jun-Kai;Huang, Bo-Hong
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.775-792
    • /
    • 2014
  • Static loading tests were carried out in this study to investigate the effect of bar cutoff on the resistance of RC beam-column sub-assemblages under column loss. Two specimens were designed with continuous main reinforcement. Four others were designed with different types of bar cutoff in the mid-span and/or the beam-end regions. Compressive arch and tensile catenary responses of the specimens under gravitational loading were compared. Test results indicated that those specimens with approximately equal moment strength at the beam ends had similar peak loading resistance in the compressive arch phase but varied resistance degradation in the transition phase because of bar cutoff. The compressive bars terminated at one-third span could help to mitigate the degradation although they had minor contribution to the catenary action. Among those cutoff patterns, the K-type cutoff presented the best strength enhancement. It revealed that it is better to extend the steel bars beyond the mid-span before cutoff for the two-span beams bridging over a column vulnerable to sudden failure. For general cutoff patterns dominated by gravitational and seismic designs, they may be appropriately modified to minimize the influence of bar cutoff on the progressive collapse resistance.

CO2 emissions optimization of reinforced concrete ribbed slab by hybrid metaheuristic optimization algorithm (IDEACO)

  • Shima Bijari;Mojtaba Sheikhi Azqandi
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.295-307
    • /
    • 2023
  • This paper presents an optimization of the reinforced concrete ribbed slab in terms of minimum CO2 emissions and an economic justification of the final optimal design. The design variables are six geometry variables including the slab thickness, the ribs spacing, the rib width at the lower and toper end, the depth of the rib and the bar diameter of the reinforcement, and the seventh variable defines the concrete strength. The objective function is considered to be the minimum amount of carbon dioxide gas (CO2) emission and at the same time, the optimal design is economical. Seven significant design constraints of American Concrete Institute's Standard were considered. A robust metaheuristic optimization method called improved dolphin echolocation and ant colony optimization (IDEACO) has been used to obtain the best possible answer. At optimal design, the three most important sources of CO2 emissions include concrete, steel reinforcement, and formwork that the contribution of them are 63.72, 32.17, and 4.11 percent respectively. Formwork, concrete, steel reinforcement, and CO2 are the four most important sources of cost with contributions of 67.56, 19.49, 12.44, and 0.51 percent respectively. Results obtained by IDEACO show that cost and CO2 emissions are closely related, so the presented method is a practical solution that was able to reduce the cost and CO2 emissions simultaneously.

Study on the Amount of Critical Corrosion Products of Reinforcement inducing Concrete Cover Cracking with Finite Element Analysis (유한 요소법을 이용한 콘크리트 벽체 균열을 발생시키는 철근의 임계 부식량에 대한 연구)

  • 김광웅;장상엽;조용범;김용철;고영태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.361-366
    • /
    • 2002
  • The deterioration of concrete structure due to corrosion of the reinforcement has created big financial losses on the overall industries. The volume expansion of the corrosion products causes internal pressure to concrete wall around reinforcing bar. If the maximum principal stress induced by internal pressure exceeds the tensile strength of the concrete at any point of time, a crack forms at any point of material. Therefore, in terms of life assessment of concrete structure, it is very important to predict the amount of corrosion products which induces initial concrete cracking. With this objective, this paper proposes the critical amount of corrosion products at interface between reinforcement and concrete using finite element analysis. If an actual survey of corrosion rates could be made, the model might supply information for condition assessment of existing concrete structure. As the mechanical properties of corrosion product and instantaneous geometry of corroded steel are considered in the analysis, the value obtained will be more realistic.

  • PDF

Anchorage Strength of High Strength Headed Bar Embedded Vertically on SFRC Members (SFRC 부재에 수직 배근된 고강도 확대머리철근의 정착강도)

  • Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.148-156
    • /
    • 2020
  • The paper is a summary of the results of the basic pullout test which is conducted to evaluate the anchorage capacity of high strength headed bars that is mechanical anchored vertically on steel fiber reinforced concrete members. The main experimental parameters are volume fraction of steel fiber, concrete strength, anchorage length, yield strength of headed bars, and shear reinforcement bar. Both sides of covering depth of the specimen are planned to double the diameter of the headed bars. The hinged point is placed at the position of each 1.5𝑙dt and 0.7𝑙dt around the headed bars, and the headed bars are drawn directly. As a result of pullout test experiment, concrete fracture and steel tensile rupture appear by experimental parameters. The compressive strength of concrete is 2.7~5.4% higher than that of steel fiber with the same parameters, while the pullout strength is 20.9~63.1% higher than that of steel fiber without the same parameters, which is evaluated to contribute greatly to the improvement of the anchorage capacity. The reinforcements of shear reinforcements parallel to the headed bars increased 1.7~7.7% pullout strength for steel fiber reinforced concrete, but the effect on the improvement of the anchorage capacity was not significant considering the increase in concrete strength. As with the details of this experiment, it is believed that the design formula for the anchorage length of KCI2017and KCI2012 are suitable for the mechanical development design of SD600 head bar that is perpendicular to the steel fiber reinforced concrete members.

Ultimate Stress of Prestressing Steel with Different Reinforcement and Tendon Depth in R.C Beams Strengthened by External Prestressing (외부 프리스트레싱으로 보강된 R.C 보에서 강재량 및 텐던깊이에 따른 프리스트레싱 강재의 극한응력)

  • Park, Sang-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.585-593
    • /
    • 2003
  • This study deals with literature review, developing a predicting equation for the ultimate stress of prestressing steel, and experimental test with the parameters affecting the ultimate stress of prestressing steel in reinforced concrete beams strengthened by external prestressing. The ACI predicting equation for the ultimate stress of unbonded prestressing steel is analyzed to develop a new integrated predicting equation. The proposed predicting equation takes rationally the effect of internal reinforcing bars into consideration as a function of prestressing steel depth to neutral depth ratio. In the experimental study, steel reinforced concrete beams strengthened using external prestressing steel are tested with the test parameters having a large effect on the ultimate stress of prestressing steel. The test parameters includes reinforcing bar and external prestressing steel reinforcement ratios, and span to depth ratio. The test results are analyzed to confirm the rationality and applicability of the proposed equation for predicting the ultimate stress of external prestressing steel.