• Title/Summary/Keyword: Steel Band

Search Result 168, Processing Time 0.028 seconds

Characterization of Aluminum Coated Layer in Hot Press Forming of Boron Steel (고온 프레스성형시 보론강 알루미늄 코팅층 거동특성)

  • Jang, Jeong-Hwan;Joo, Byeong-Don;Lee, Jae-Ho;Moo, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.4
    • /
    • pp.183-188
    • /
    • 2008
  • Hot press forming allows geometrically complicated parts to be formed from sheet and the rapid cooling hardens them to extremely high strength. The main purpose of this research is to characterize Al coated layer in Al coated boron steel during hot press forming. For the hot press hardening experiment, test specimens were heated up to $810{\sim}930^{\circ}C$ and held for 3, 6 and 9 minutes, respectively. And then, some specimens were press hardened and others were air-cooled without any pressing for the comparison purpose. Al coated layer shows four distinct micro-structural regions of interest; diffusion zone, Al-Fe zone(I) low-Al zone(LAZ) and Al-Fe zone(II). Band-like LAZ is clearly shown at temperature ranges of $810{\sim}870^{\circ}C$ and sparsely dispersed at temperature higher than 900oC. The micro-cracking behavior in the Al coated layer during forming were also analyzed by bending and deep drawing tests. The strain concentration in softer LAZ is found to be closely related with micro-cracking and exfoliation in coated layer during forming.

Synthesis of CdSe Multi-shell Structured Nanocrystal Quantum Dot through the Continuous Flow Reactor

  • Kim, Kyung-Nam;No, Jae-Hong;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.417-417
    • /
    • 2012
  • For desired optical properties of QDs, it is very important to reduce the presence of defects on their surfaces. Passivation of surface defects using larger band gap materials is the most effective way. Some groups successfully synthesized Cd based multi-shell structured quantum dots and improved its optical properties. However, its productivity has limit because of the amounts of glass ware and space. In this research, we try to synthesize Cd based multi-shell structured nanocrystal quantum dots to overcome demerits of conventional batch synthetic method. This reactor composed pump, SUS reaction part (3.2 mm stainless steel and furnace) and batch mixer. We successively synthesized CdSe/CdS/ZnS quantum dot at this reactor in one step.

  • PDF

Effect of Interaction Between Dislocation and Nitrides on High Temperature Deformation Behavior of12%Cr-15%Mn Austenitic Steels (전위와 질화물의 상호작용이 12%Cr-15%Mn 오스테나이트강의 고온변형거동에 미치는 영향)

  • 배동수
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.58-62
    • /
    • 2001
  • The objective of research is to clarify the interaction between dislocations and precipitates during high temperature creep deformation behaviors of high n austenitic steels. After measuring the internal stress in minimum creep rate state under applied stress of 236MPa at 873K, a transmission electron microscope (TEM) observation was performed to investigate the interaction between dislocations and precipitates during high temperature creep deformation. The band widths and values of internal stress increased when the nitride precipitates distribute more densely. Fine nitrides disturbed the dislocation movement with pinning the dislocations and perfect dislocations were separated into Shockley partial dislocations by fine nitrides. Coarse nitrides disturbed the dislocation movement with climb mechanism.

  • PDF

Machining condition monitoring for micro-grooving on mold steel using fuzzy clustering method (퍼지 클러스터링을 이용한 금형강에 미세 그루브 가공시 가공상태 모니터링)

  • 이은상;곽철훈;김남훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.47-54
    • /
    • 2003
  • Research during the past several years has established the effectiveness of acoustic emission (AE)-based sensing methodologies for machine condition analysis and process. AE has been proposed and evaluated for a variety of sensing tasks as well as for use as a technique for quantitative studies of manufacturing process. STD11 has been known as difficult-to-cut materials. The micro-grooving machine was developed for this study and the experiments were performed using CBN blade for machining STD11. Evaluating the machining conditions, frequency spectrum analysis of acoustic emission (AE) signals according to each conditions were applied. Fuzzy clustering method for associating the preprocessor outputs with the appropriate decisions was followed by frequency spectrum analysis. FFT is used to decompose AE signal into different frequency bands in time domain, the root mean square (RMS) values extracted from the decomposed signal of each frequency band were used as features.

Development of Ultrasonic Wave Propagation Imaging System

  • Chia, Chen-Ciang;Lee, Jung-Ryul;Kim, Jong-Heon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.283-292
    • /
    • 2009
  • Laser-based ultrasonic sensing requires the probe with fixed fecal length, but this requirement is not essential in laser-based ultrasonic generation. Based on this fact, we designed a pulsed laser-based ultrasonic wave propagation imaging (UWPI) system with a tilting mirror system for rapid scanning of target, and an in-line band-pass filtering capable of ultrasoaic mode selection. 1D-temporal averaging, 2D-spatial averaging, and 3D-data structure building algorithms were developed far clearer results allowing fur higher damage detectability. The imaging results on a flat stainless steel plate were presented in movie and snapshot formats which showed the propagation of ultrasound visible as a concentric wavefield emerging from the location of an ultrasonic sensor. A hole in the plate with a diameter of 1 mm was indicated by the scattering wavefields. The results showed that this robust UWPI system is independent of focal length and reference data requirements.

Relationship between Oxidation and Wear of Ultra-High Molecular Weight Polyethylene for Total Joint Arthroplasty

  • Lee, Kwon-Yong
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.55-58
    • /
    • 2001
  • The most widely-used orthopaedic grade polymer bearing liner material, ultrahigh molecular weight polyethylene (UHMWPE), for the total joint arthroplasty degrades after gamma-irradiation sterilization through the progressive oxidation in a shelf and in vivo. Oxidative degradation makes UHMWPE brittle and leads to decrease in mechanical properties. In this study the relationship between post-gamma-irradiation aging time and wear of UHMWPE was investigated. Six retrieved polyethylene hip liners implanted for 3-16 years and then stored in air for 1.5-6.5 years until tests were used. Two types of pin-on-disk wear testing were conducted by the uni-directional repeat pass rotating and by the linear reciprocating stainless steel disks against stationary polyethylene pins under 4Mpa at 1Hz with bovine serum lubrication in ambient environment. Wear of retrieved polyethylene hip liners does not have direct correlation with in vivo or total aging time. Linear reciprocal sliding motion generated more remarkable wear than uni-directional repeat pass sliding motion. It indicates that kinematic motion affects very crucially on the wear of aged UHMWPE having brittle white band region.

  • PDF

Damage classification of concrete structures based on grey level co-occurrence matrix using Haar's discrete wavelet transform

  • Kabir, Shahid;Rivard, Patrice
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.243-257
    • /
    • 2007
  • A novel method for recognition, characterization, and quantification of deterioration in bridge components and laboratory concrete samples is presented in this paper. The proposed scheme is based on grey level co-occurrence matrix texture analysis using Haar's discrete wavelet transform on concrete imagery. Each image is described by a subset of band-filtered images containing wavelet coefficients, and then reconstructed images are employed in characterizing the texture, using grey level co-occurrence matrices, of the different types and degrees of damage: map-cracking, spalling and steel corrosion. A comparative study was conducted to evaluate the efficiency of the supervised maximum likelihood and unsupervised K-means classification techniques, in order to classify and quantify the deterioration and its extent. Experimental results show both methods are relatively effective in characterizing and quantifying damage; however, the supervised technique produced more accurate results, with overall classification accuracies ranging from 76.8% to 79.1%.

APPLICATION OF TIN ION-PLATING TO THE ORTHODONTIC APPLIANCE (교정용 장치물에 대한 TiN Ion Plating의 응용)

  • Kwon, Oh-Won;Kim, Kyo-Han
    • The korean journal of orthodontics
    • /
    • v.21 no.1 s.33
    • /
    • pp.7-16
    • /
    • 1991
  • To estimate the possibility of the application of TiN ion-plating to the orthodontic appliance, colorimetric properties, and characteristics of ion-plated film as well as adhesive strength of TiN film to the substrate and mechanical properties of ion-plated orthodontic appliance were investigated. The obtained results were as follows: 1) TiN ion-plated film had the colorimetric properties which were the hue of about 2.5 Y, the brightness of about 6, and the chroma of about 4 by the standard color chip of JIS. 2) TiN ion-plated film was $2{\mu}m$ in thickness and its deposition pattern was rather irregular. 3) TiN phase was confirmed on the X-ray diffraction pattern. 4) Critical load for delamination of ion-plated film from stainless steel band was 10N. 5) Tensile and yield strength of ion-plated specimen was increased about 10Kg $f/mm^2$, while elongation was decreased $1\%$ compairing to the values of the non ion-plated specimen.

  • PDF

Energy-Based Seismic Evaluation of Reinforced Concrete Structures I - Flexural Components (에너지에 근거한 철근콘크리트 구조물의 내진성능 평가 I - 휨요소)

  • 김장훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.33-44
    • /
    • 1999
  • An energy balance procedure is developed to incorporate the effects of earthquake duration which involves the effect of cyclic loading and the corresponding cumulative plastic deformation. Particular emphasis is given to the flexural failure of non-seismically designed columns of reinforced concrete frames. For this, conceptual strength deterioration models for columns, governed by concrete, anchorage failure and longitudinal steel fracture due to low-cycle fatigue, are proposed. It is evident that the energy-based method has good agreement with the experimental data and is able to predict the failure mode.

  • PDF

Cure Monitoring and Nondestructive Evaluation of Carbon Fiber/Epoxy Composites by the Measurements of Electrical Resistance and AE

  • Lee Sang-Il;Yoon Dong-Jin;Park Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.264-267
    • /
    • 2004
  • Cure monitoring and nondestructive characteristics of carbon fiber/epoxy composites were evaluated by the measurements of electrical resistance and acoustic emission (AE). Logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to infinity when the fiber fracture occurred, whereas that of the electrodeposited composite increased relatively broadly up to infinity. As curing temperature increased. logarithmic electrical resistivity of steel fiber increased. On the other hand, electrical resistance of carbon fiber decreased due to the intrinsic electrical properties based on the band theory. The apparent modulus of the electrodeposited composite was higher than that of the untreated composite due to the improved interfacial shear strength (IFSS).

  • PDF