• Title/Summary/Keyword: Steam reforming reaction

Search Result 170, Processing Time 0.024 seconds

Study of Catalytic Performance of $La_{0.7}Sr_{0.3}Cr_{1-x}Ni_{x}O_{3}$ Perovskite for Steam Reforming of Propane ($La_{0.7}Sr_{0.3}Cr_{1-x}Ni_{x}O_{3-{\delta}$ Perovskite 촉매의 프로판 수증기 개질 반응에서의 특성 연구)

  • Kim, Jae-Ro;Kim, Nak-Hyeon;Sohn, Jung-Min
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.715-719
    • /
    • 2011
  • The $La_{0.7}Sr_{0.3}Cr_{1-x}Ni_{x}O_{3}$(LSCN-x) perovskites were prepared by citric acid and EDTA using a sol-gel method. The LSCN-x was characterized by BET, XRD, SEM, $H_2$-TPR, EA and TEM. The catalytic performance of LSCN-x catalysts in steam reforming of propane in the temperature range 600~$800^{\circ}C$ was investigated. Propane conversion and hydrogen yield increased with an increase in the amount of added Ni up to x=0.5 in the B-site, denoted as LSCN-0.5, under S/C=1 and S/C=1.7 reaction conditions. The LSCN-0.5 catalyst exhibited the best performance under Ni-substitution of which propane conversion and hydrogen yield was 100%, 95.9% at $800^{\circ}C$ in the S/C=1.7 condition, respectively. The morphology of carbon deposited on the catalysts after reaction exhibited filamentous carbon and amount of carbon deposited on the catalysts after reaction increased with an increase in the amount of added Ni.

Kinetic Study on the Mixing Region of a Hydrocarbon Reformer (개질기 혼합영역에서 탄화수소 연료의 반응 특성에 대한 연구)

  • Kim, Sun-Young;Bae, Joong-Myeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.357-362
    • /
    • 2011
  • Complete mixture preparation of reactants prior to catalytic reforming is an enormously important step for successful operation of a fuel reformer. Incomplete mixing between fuel and reforming agents such as air and steam can cause temperature overshoot and deposit formation which can lead the failure of operation. For that purpose it is required to apply computational models describing coupled kinetics and transport phenomena in the mixing region, which are computationally expensive. Therefore, it is advantageous to analyze the gas-phase reaction kinetics prior to application of the coupled model. This study suggests one of the important design constraints, the required residence time in the mixing chamber to avoid substantial gas-phase reactions which can lead serious deposit formation on the downstream catalyst. The reactivity of various gaseous and liquid fuels were compared, then liquid fuels are far more reactive than gaseous fuels. n-Octane was used as a surrogate among the various hydrocarbons, which is one of the traditional liquid fuel surrogates. The conversion was slighted effected by reactants composition described by O/C and S/C. Finally, threshold residence times in the mixing region of a hydrocarbon reformer were studied and the mixing chamber is required to be designed to make complete mixture of reactants by tens of milliseconds at the temperature lower than $400^{\circ}C$.

Computational Analysis for Improving Internal Flow of High Pressure Methanol Steam Reformer Pressure Vessel (고압형 메탄올 수증기 개질기 압력용기의 내부 유동 개선을 위한 전산 해석)

  • YU, DONGJIN;JI, HYUNJIN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.411-418
    • /
    • 2020
  • A reformer is a device for producing hydrogen used in fuel cells. Among them, methanol steam reformer uses methanol as fuel, which is present as a liquid at room temperature. It has the advantage of low operating temperature, high energy density, and high hydrogen production. The purpose of this study is to improve the internal flow of the pressure vessel when a bundle of methanol steam reformer in the pressure vessel goes out to a single outlet. An analysis of equilibrium reaction to methanol steam reforming reaction was conducted using Aspen HYSYS® (Aspen Technology Inc., Bedford, USA), and based on the results, computational analysis was conducted using ANSYS Fluent® (ANSYS, Inc., Canonsburg, USA). For comparison of the results, the height of the pressure vessel, outlet diameter, and fillet was set as variables, and the optimum geometry was selected by comparing the effects of gravity and the amount of negative pressure.

The Performance of NI/$MgAl_2O_4$ Coated Metal Monolith in Natural Gas Steam Reforming for Hydrogen Production (NI/$MgAl_2O_4$코팅된 금속 모노리스 촉매의 수소 생산을 위한 천연가스 수증기 개질 반응특성에 관한 연구)

  • Choi, Eun-Jeong;Koo, Kee-Young;Jung, Un-Ho;Rhee, Young-Woo;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.500-506
    • /
    • 2010
  • The metal monolith catalyst coated with 15wt% Ni/$MgAl_2O_4$ is applied to the natural gas steam reforming for hydrogen production. To address the improvement of adherence between metal monolith and catalyst coating layer, the pre-calcination temperature as well as the coating conditions of $Al_2O_3$ sol are optimized. When the Fe-Cr alloy monolith is pre-calcined at $900^{\circ}C$ for 6 h, $Al_2O_3$ layer was formed uniformly on the entire surface of the metal substrate. It is seen that the formation of $Al_2O_3$ layer on the monolith surface is essential for the uniform coating of $Al_2O_3$ sol onto the monolith substrate. The monolith catalyst coated with 10wt% $Al_2O_3$ sol shows high $CH_4$ conversion and good thermal stability as compared with the monolith catalyst without $Al_2O_3$ sol coating under severe reaction conditions with high GHSV of 30,000 $h^{-1}$ at $700^{\circ}C$. In addition, the metal monolith catalyst shows higher catalytic activity and better thermal conductivity than 15wt% Ni/$MgAl_2O_4$ pellet catalyst.

A Simulation of the Tubular Packed Bed Reactor for the Steam-CO2 Reforming of Natural Gas (천연가스의 수증기-이산화탄소 복합개질을 위한 충진층 관형반응기의 전산모사)

  • Lee, Deuk-Ki;Koo, Kee-Young;Seo, Dong-Joo;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.73-82
    • /
    • 2012
  • A 2-dimensional heterogeneous reactor model was developed and simulated for a tube reactor of packed bed where the steam-$CO_2$ combined reforming reaction of natural gas proceeded to produce synthesis gas. Under the reactor feeding rate, 45 $Nm^3$/h, of the reactant gas stream, the 2-dimensional heterogeneous reactor model showed the similar results to those from the ASPEN simulator although there were some discrepancies between the two in the temperature and the $H_2$/CO ratio of the reformed gas at the reactor exit. The calculated enthalpy difference between the reformed gas at the reactor exit and the reactant gas fed to the reactor was closely correspondent to the total amount of heat transferred to the reactor interior from the furnace. This supports that the 2-dimensional heterogeneous reactor model was reasonably established and the numerical solution was properly obtained.

Exergy Analysis on the System of Superheated Steam (700℃, 3 atm) Production for the Reversible Electrolysis: Based Hydrogen Production (양방향수전해 기반 수소제조용 초고온스팀 생산시스템의 엑서지 분석)

  • HAN, DANBEE;PARK, SENGRYONG;CHO, CHONGPYO;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • Hydrogen can be produced by reforming reaction of natural gas (NG) and biogas, or by water electrolysis. In this study, hydrogen production through water-electrolysis needs superheated steam above $700^{\circ}C$ for high efficiency. The production method of hydrogen like this was recommended for the 4-type processes for superheated steam ($700^{\circ}C$, 3 atm) by Bio-SRF combustion furnace. The 4-type processes to produce superheated steam at $700^{\circ}C$ from the heat source of SRF combustion furnace was simulated using PRO II. The optimum process was selected through exergy analysis. The difference of process 1 and 2 is to the order of depressure and heating process to change $180^{\circ}C$ and 7 atm to $700^{\circ}C$ and 3 atm. Process 3 and 4 is to utilize 25% of steam to generate superheated steam and remaining to use for the power generation by steam generator.

Study on Possibility of Diesel Reforming with Hydrogen Peroxide in Low-Oxygen Environments (산소희박환경에서 과산화수소를 이용한 디젤개질 가능성 탐구)

  • Han, Gwangwoo;Bae, Minseok;Bae, Joongmyeon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.584-589
    • /
    • 2015
  • For effective power generation with fuel cells in low-oxygen environments such as submarines and unmanned underwater vehicles, a hydrogen source which has a high hydrogen storage density is required. Diesel fuel is easy to storage and supply due to its liquid phase and it has a high density per unit volume and unit mass of hydrogen that required for driving the fuel cells. In this paper, diesel fuel was selected as a hydrogen source for driving the fuel cell in oxygen lean environments. In addition, the aqueous hydrogen peroxide solution was suggested as an alternative oxidant for hydrogen production through the diesel reforming reaction because of its high oxygen density and liquid phase which makes it easy to storage. In order to determine the characteristics of hydrogen peroxide as an oxidant of diesel reforming, comparative experiments were conducted and it was found that hydrogen peroxide solution has the same characteristics when reformed with oxidants of both steam and oxygen. Moreover, the commercial diesel reforming performances were analyzed according to the reaction temperature and concentration of aqueous hydrogen peroxide solution. Then, through the 49 hours accelerated degradation tests, the possibility of hydrogen production via diesel and aqueous hydrogen peroxide solution was confirmed.

A CFD Analysis on Heat Transfer of High Temperature Steam through Interface with Superheater and SOEC for Hydrogen Production (SOEC에 과열기의 고온 스팀을 공급하는 Interface의 열전달에 관한 전산해석)

  • BYUN, HYUN SEUNG;HAN, DANBEE;PARK, SEONGRYONG;CHO, CHONGPYO;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.169-176
    • /
    • 2020
  • There is a growing interest in hydrogen energy utilization since an alternative energy development has been demanded due to the depletion of fossil fuels. Hydrogen is produced by the reforming reaction of natural gas and biogas, and the electrolysis of water. An solid oxide electrolyte cell (SOEC) is reversible system that generates hydrogen by electrolyzing the superheated steam or producing the electricity from a fuel cell by hydrogen. If the water can be converted into steam by waste heat from other processes it is more efficient for high-temperature electrolysis to convert steam directly. The reasons are based upon the more favorable thermodynamic and electrochemical kinetic conditions for the reaction. In the present study, steam at over 180℃ and 3.4 bars generated from a boiler were converted into superheated steam at over 700℃ and 3 bars using a cylindrical steam superheater as well as the waste heat of the exhaust gas at 900℃ from a solid refuse fuel combustor. Superheated steam at over 700℃ was then supplied to a high-temperature SOEC to increase the hydrogen production efficiency of water electrolysis. Computational fluid dynamics (CFD) analysis was conducted on the effects of the number of 90° elbow connector for piping, insulation types and insulation layers of pipe on the exit temperature using a commercial Fluent simulator. For two pre-heater injection method of steam inlet and ceramic wool insulation of 100 mm thickness, the highest inlet temperature of SOEC was 744℃ at 5.9 bar.

Steam Gasification Characteristics of Wood Pellet (우드펠릿의 스팀가스화 특성)

  • Hwang, Hoon;Lee, Moon-Won;Choi, Sun-Yong;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.215-220
    • /
    • 2010
  • Hydrogen is a clean and efficient energy source and is expected to take an important role in future energy demand. A possibly good route to produce hydrogen is by using biomass and organic wastes as a source through thermo-chemical conversion technology. In this study, pyrolysis of wood Pellet(Oregon pine) has been carried out in batch type fixed-bed reactor in $N_2$ atmosphere during 20 minutes to determine the optimum hydrogen generating conditions. At the influence of temperature, hydrogen yield was increased with increasing temperature. For the influence of Steam/Biomass Ratio(SBR), hydrogen yield was increased by steam addition at low temperature condition. However, effect of steam addition was insignificant over at SBR = 1. The hydrogen yield was increased with increasing SBR at high temperature condition. From result of $H_2$/CO and $H_2/CH_4$ ratio, dominant reaction was steam reforming in this experimental condition. The optimum condition for hydrogen production was determined as follows: $H_2$ yield = 38.3 vol.% (56.01 L/min kg) at $900^{\circ}C$, SBR=3.

Study on Characteristic of Methane Reforming and Production of Hydrogen using GlidArc Plasma (GlidArc 플라즈마를 이용한 메탄의 개질 특성 및 수소 생산에 관한 연구)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.942-948
    • /
    • 2007
  • Popular techniques for producing hydrogen by converting methane include steam reforming and catalyst reforming. However, these are high temperature and high pressure processes limited by equipment, cost and difficulty of operation. Low temperature plasma is projected to be a technique that can be used to produce high concentration hydrogen from methane. It is suitable for miniaturization and fur application in other technologies. In this research, the effect of changing each of the following variables was studied using an AC GlidArc system that was conceived by the research team: the gas components ratio, the gas flow rate, the catalyst reactor temperature and voltage. Results were obtained for methane and hydrogen yields and intermediate products. The system used in this research consisted of 3 electrodes and an AC power source. In this study, air was added fur the partial oxidation reaction of methane. The result showed that as the gas flow rate, the catalyst reactor temperature and the electric power increased, the methane conversion rate and the hydrogen concentration also increased. With $O_2/C$ ratio of 0.45, input flow rate of 4.9 l/min and power supply of 1 kW as the reference condition, the methane conversion rate, the high hydrogen selectivity and the reformer energy density were 69.2%, 32.6% and 35.2% respectively.