• Title/Summary/Keyword: Steam pipe

Search Result 152, Processing Time 0.035 seconds

Cause Analysis for the Wall Thinning and Leakage of a Small Bore Piping Downstream of an Orifice (주증기계통 오리피스 후단 소구경 배관의 감육 및 누설 발생)

  • Hwang, Kyeong Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.227-232
    • /
    • 2013
  • A number of components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the components. In April 2013, one (1) inch small bore piping branched from the main steam line experienced leakage resulting from wall thinning in a 1,000 MWe Korean PWR nuclear power plant. During the normal operation, extracted steam from the main steam line goes to condenser through the small bore piping. The leak occurred in the downstream of an orifice. A control valve with vertical flow path was placed on in front of the orifice. This paper deals with UT (Ultrasonic Test) thickness data, SEM images, and numerical simulation results in order to analyze the extent of damage and the cause of leakage in the small bore piping. As a result, it is concluded that the main cause of the small bore pipe wall thinning is liquid droplet impingement erosion. Moreover, it is observed that the leak occurred at the reattachment point of the vortex flow in the downstream side of the orifice.

Low-frequency modes in the fluid-structure interaction of a U-tube model for the steam generator in a PWR

  • Zhang, Hao;Chang, Se-Myong;Kang, Soong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1008-1016
    • /
    • 2019
  • In the SG (steam generator) of PWR (pressurized water reactor) for a nuclear plant, hundreds of U-shaped tubes are used for the heat exchanger system. They interact with primary pressurized cooling water flow, generating flow-induced vibration in the secondary flow region. A simplified U-tube model is proposed in this study to apply for experiment and its counterpart computation. Using the commercial code, ANSYS-CFX, we first verified the Moody chart, comparing the straight pipe theory with the results derived from CFD (computational fluid dynamics) analysis. Considering the virtual mass of fluid, we computed the major modes with the low natural frequencies through the comparison with impact hammer test, and then investigated the effect of pump flow in the frequency domain using FFT (fast Fourier transform) analysis of the experimental data. Using two-way fluid-structure interaction module in the CFD code, we studied the influence on mean flow rate to generate the displacement data. A feasible CFD method has been setup in this research that could be applied potentially in the field of nuclear thermal-hydraulics.

Development of Differential Type Eddy Current Probe for NDT Evaluation of the Steam Generator Tube (증기발생기 전열관의 비파괴 탐상용 차등형 와전류 탐촉자 개발)

  • Jung, S.Y.;Son, D.;Ryu, K.S.;Park, D.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.292-297
    • /
    • 2005
  • Steam generator of a nuclear power plant has important rolls for the heat transfer and the isolation of radioactive materials. So bursting of the steam generator tube is directly related to the accident of nuclear power plants. Incone1600 has been used for the steam generator tube material. The material shows non-magnetic and metallic properties, eddy current NDT method has been employed for defects detection. In this work, a differential type of eddy current probe was developed to improve resolution of defect detection. To verify properties of the developed differential type eddy current probe, we have made reference material with SUS304 which has similar magnetic and electrical properties of Inconel600. Using the developed differential type eddy current probe, we can detect defect size of 0.25 mm in diameter and 0.2 mm in depth (volume of $1{\times}10^{-3}\;mm^3$) with the reference material.

Numerical Analysis on the Characteristics of Supersonic Steam Jet Impingement Load (초음속 증기제트의 충돌하중 특성에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Park, Won Man;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • Structures, systems and components of nuclear power plants should be able to maintain safety even in the event of design-basis accidents such as high-energy line breaks. The high-pressure steam jet ejected from the broken pipe may cause damage to the adjacent structures. The ANSI/ANS 58.2 code has been adopted as a technical standard for evaluating the jet impingement load. Recently, the U.S. NRC pointed out the non-conservativeness of the ANSI/ANS 58.2, because it does not take into account the blast wave effect, dynamic behavior of the jet, and oversimplifies the shape and load characteristics of the supersonic steam jet. Therefore, it is necessary to improve the evaluation method for the high-energy line break accident. In order to evaluate the behavior of supersonic steam jet, an appropriate numerical analysis technique considering compressible flow effect is needed. In this study, numerical analysis methodology for evaluating supersonic jet impingement load was developed and verified. In addition, the conservativeness of the ANSI/ANS 58.2 model was investigated using the numerical analysis methodology. It is estimated that the ANSI jet model does not sufficiently reflect the physical behavior of under-expanded supersonic steam jet and evaluates the jet impingement load lower than CFD analysis result at certain positions.

Failure of Hydraulic Oil Pipe and Transient Vibration (압유배관의 절손 원인 규명과 과도진동)

  • Kim, Yeon-Whan;Lee, Young-Shin;Koo, Jae-Raeyang;Kim, Hee-Su;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1268-1273
    • /
    • 2003
  • This paper presents a case history of piping failures on power plant. The root cause of the failure was defined to set the optimal countermeasures. The failure comes from transient vibration and the 1st stress increased at the hydraulic oil supply system of control valves for high pressure steam turbine.

  • PDF

Examination and Measures on Failure of Hydraulic Oil Supply Pipe of Control Valve of Steam Turbine in 200MW Thermal Power Plant (200MW급 화력발전소 고압터빈 제어밸브 압유배관의 절손 원인과 대책)

  • Kim, Yeon-Whan;Lee, Young-Shin;Kim, Hee-Soo;Lee, Hyun;Kim, Sung-Hwi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.569-576
    • /
    • 2002
  • A case history is presented pertaining to piping fatigue by vibrations and sustain stresses in the hydraulic oil supply system for control valves in a 200MW thermal power plant that ultimately resulted in pipe rupture. The Piping was designed to supply the hydraulic oil for turbine control valves. Testing and analyses were performed on the system to develop solution to repair work on failures.

  • PDF

Assessment of Fatigue Life for Pipeline Welds Using X-ray Diffraction Method (X선 회절을 이용한 배관용접부의 피로수명 평가)

  • Lee, Sang-Guk;Yu, Geun-Bong;Kim, Ui-Hyeon;Choe, Hyeon-Seon
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.73-75
    • /
    • 2005
  • The objective of this study is to estimate the feasibility of X-ray diffraction method application for fatigue life assessment of the high-temperature pipeline steel such as main steam pipe, reheater pipe and header etc. in power plant. In this study, X-ray diffraction tests using various types of specimen simulated low cycle fatigue damage were performed in order to analyze fatigue properties when fatigue damage conditions become various stages such as 1/4, 1/2 and 3/4 of fatigue life, respectively. As a result of X-ray diffraction tests for specimens simulated fatigue damages, we conformed that the variation of the full width at half maximum intensity decreased in proportion to the increase of fatigue life ratio.

  • PDF

Prediction of Possibility of Indoor Pipe Freezing in Heat Only Boiler Room through Thermal Analysis (열분석을 통한 열전용 보일러동 실내배관의 동파 가능성 예측)

  • Lim, Byoung-Ik;Chung, Kwang-Seop;Kim, Young-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.3
    • /
    • pp.19-28
    • /
    • 2012
  • In a heat only boiler system of a steam power plant, outdoor air required for combustion is made to pass through indoor space for increasing the boiler efficiency. Due to heat generated by various equipments, temperature of the air that enters the boiler will increase resulting in combustion efficiency. If the outdoor air temperature is low, however, this will cause freezing and bursting of pipes which are filled with water. It is especially fatal to small diameter pipes and pipes connected to measuring instruments. The purpose of this study is find operation and outdoor conditions where this phenomena can happen and also establish preventive measures to avoid this problem.

자율운항선박 CBM 보조기기 및 배관 상태 모니터링 및 고장 진단 SW 연구

  • 김미나;박순호;서종희
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.212-213
    • /
    • 2021
  • 자율운항선박 기술개발사업 중 2세부(자율운항선박 핵심 기관시스템 성능 모니터링 및 고장예측 진단 기술 개발) 과제는 자율운항선박의 추진 및 전력 생산을 담당하는 핵심 기관시스템의 운전 상태를 실시간 모니터링하여, 계측 데이터 기반의 고장 진단/예측을 수행하고 장애 발생 시 원격 지원체계를 통해 체계적/전문적 정비를 수행할 수 있도록 지원하는 기술이다. 자율운항선박은 선원이 없이 자율적으로 운항도 하지만, 핵심장비/기자재에 대해서도 실측 데이터를 기반으로 스스로 판단하여 고장여부에 대한 의사결정이 가능하여야 한다. 선박 기관시스템은 선박 운항의 안전과 정시 입·출항에 핵심이 되는 장비/기자재로써 자율운항선박 구현에 필요한 핵심 기술이다. 본 연구에서는 자율운항선박 핵심장비 중 보조기기 2종(Pump, Purifier), 배관(Seawater Pipe, Steam Pipe)의 성능 모니터링 및 고장예측/진단 소프트웨어를 개발하기 위한 연구를 수행한다.

  • PDF

Hybrid Photovoltaic/Thermal Solar System with Pulsating Heat Pipe Type Absorber (진동형 히트파이프 흡열판이 결합된 하이브리드 태양광/열 시스템)

  • Kim, Chang-Hee;Jeon, Dong-Hwan;Kong, San-Gun;Kim, Jong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2148-2153
    • /
    • 2007
  • The electricity conversion-efficiency of solar cell for commercial application is about 6-15%. More than 85% of the incoming solar energy is either reflected or absorbed as heat energy. Consequently, the working temperature of the photovoltaic cells increases considerably after prolonged operations and the cell's efficiency drops significantly. PV/T refers to the integration of a PV module and a solar thermal collector in a single piece of equipment. By cooling the PV module with a fluid steam like air or water, the electricity yield can be improved. At the same time, the heat pick-up by the fluid can be to support space heating or service hot-water systems. In this study, a pulsating heat pipe solar heat collector was combined with single-crystal silicon photovoltaic cell in hybrid energy-generating unit that simultaneously produced low temperature heat and heat and electricity. This experiment was investigating thermal and electrical efficiency for evaluation of a PV/T system.

  • PDF