• Title/Summary/Keyword: Steam pipe

Search Result 153, Processing Time 0.032 seconds

Cause Analysis of Flow Accelerated Corrosion and Erosion-Corrosion Cases in Korea Nuclear Power Plants

  • Lee, Y.S.;Lee, S.H.;Hwang, K.M.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2016
  • Significant piping wall thinning caused by Flow-Accelerated Corrosion (FAC) and Erosion-Corrosion (EC) continues to occur, even after the Mihama Power Station unit 3 secondary pipe rupture in 2004, in which workers were seriously injured or died. Nuclear power plants in many countries have experienced FAC and EC-related cases in steam cycle piping systems. Korea has also experienced piping wall thinning cases including thinning in the downstream straight pipe of a check valve in a feedwater pump line, the downstream elbow of a control valve in a feedwater flow control line, and failure of the straight pipe downstream of an orifice in an auxiliary steam return line. Cause analyses were performed by reviewing thickness data using Ultrasonic Techniques (UT) and, Scanning Electron Microscope (SEM) images for the failed pipe, and numerical simulation results for FAC and EC cases in Korea Nuclear Power Plants. It was concluded that the main cause of wall thinning for the downstream pipe of a check valve is FAC caused by water vortex flow due to the internal flow shape of a check valve, the main cause of wall thinning for the downstream elbow of a control valve is FAC caused by a thickness difference with the upstream pipe, and the main cause of wall thinning for the downstream pipe of an orifice is FAC and EC caused by liquid droplets and vortex flow. In order to investigate more cases, additional analyses were performed with the review of a lot of thickness data for inspected pipes. The results showed that pipe wall thinning was also affected by the operating condition of upstream equipment. Management of FAC and EC based on these cases will focus on the downstream piping of abnormal or unusual operated equipment.

The study on the variable orifice spray of the steam power plant desuperheater (화력발전설비의 과열증기저감용 가변오리피스 분사 특성)

  • Kim, Jeong-Sik;Kim, Kwang-Hee;Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • The steam power plant is becoming more important to supply a stable power lately. Desuperheater of the steam power plant facility plays a role in maintaining the proper superheat to avoid damage turbine power due to the superheated steam produced in the boiler. In this study, when the steam flows $530^{\circ}C$, 36.7 kg/s, 1.36 MPa in the 460mm pipe, variable orifice nozzle developed in Korea was carried out the performance analysis in coolant injection conditions of $150^{\circ}C$, 4.28 MPa. Findings, steam pipe coolant temperature was maintained at $446^{\circ}C$ and sprayed droplet size was verified by $50{\mu}m$ or less.

Pipe Inspection Robot Using an Inch-Worm Mechanism with Embedded Pneumatic Actuators

  • Choi, Chang-Hwan;Jung, Seung-Ho;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.346-351
    • /
    • 2005
  • The outlet feeder pipe thinning in a PHWR (Pressurized Heavy Water Reactor) is caused by high pressure steam flow inside the pipe, which is a well known degradation mechanism called FAC (Flow Assisted Corrosion). In order to monitor the degradation, the thickness of the outlet bends closed to the exit of the pressure tube should be measured and analyzed at every official overhaul. This paper develops a mobile feeder pipe inspection robot that can minimize the irradiation dose of human workers by automating the measurement process. The robot can move by itself on the feeder pipe by using an inch worm mechanism, which is constructed by two gripper bodies that can fix the robot body on the pipe, one extendable and contractable actuator, and a rotation actuator connected the two gripper bodies to move forward and backward, and to rotate in the circumferential direction

  • PDF

Design of a Solar Thermal Storage System Employing Heat Pipes and Molten Salts (히트파이프와 용융염을 사용하는 태양열 축열조의 설계)

  • Lee, Jung-Ryun;Boo, Joon-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.86-91
    • /
    • 2011
  • Thermal design was conducted for a solar thermal storage system in a medium-temperature range between $200^{\circ}C$ and $400^{\circ}C$. The system was composed of heat pipes as heat carrier and molten salts as phase-change storage material. Each heat pipe penetrated through the storage system and had two heat-exchanging sections at both ends to interact with high-and low-temperature steams, while it exchanged heat with molten salts in the middle section. During a heat-storage mode, the heat pipes transferred heat from the hot steam at one side to the molten salts and it transferred heat from the molten salt to the cold steam at the other side during the heat-dissipating mode. A tube-bank type heat exchanger theory was applied to this design task to meet the required inlet and outlet temperatures of the steams depending on the operation modes. Several design variables were considered including the lengths of evaporator and condenser of a heat pipe, traverse and longitudinal pitches of the pipe, and the number of rows of the heat pipes for two different molten salt baths. An optimum design results were presented with discussion.

  • PDF

Study on Design Change of a Pipe Affected by Liquid Droplet Impingement Erosion (액적충돌침식 영향 배관의 설계변경에 관한 연구)

  • Hwang, Kyeong-Mo;Lee, Chan-Gyu;Bhang, Keug-Jin;Yim, Young-Sig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1097-1103
    • /
    • 2011
  • Liquid droplet impingement erosion (LDIE) is caused by the impact of high-velocity droplets entrained in steam or air on metal. The degradation caused by the LDIE has been experienced in steam turbine internals and high-velocity airplane components (particularly canopies). Recently, LDIE has also been observed in the pipelines of nuclear plants. LDIE among the pipelines occurs when two-phase steam experiences a high pressure drop (e.g., across an orifice in a line to the condenser). In 2011, a nuclear power plant in Korea experienced a steam leak caused by LDIE in a pipe through which a two-phase fluid was flowing. This paper describes a study on the design change of a pipe affected by LDIE in order to mitigate the damage. The design change has been reviewed in terms of fluid dynamics by using the FLUENT code.

Feeder Pipe Inspection Robot with an Inch-Worm Mechanism Using Pneumatic Actuators

  • Choi, Chang-Hwan;Jung, Seung-Ho;Kim, Seung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.87-95
    • /
    • 2006
  • The outlet feeder pipe thinning in a PHWR (Pressurized Heavy Water Reactor) is caused by a high pressure steam flow inside the pipe, which is a well known degradation mechanism called a FAC (Flow Assisted Corrosion). In order to monitor the degradation, the thickness of the outlet bends close to the exit of the pressure tube should be measured and analyzed at every official overhaul. This paper describes a mobile feeder pipe inspection robot that can minimize the irradiation dose to human workers by automating the measurement process. The robot can move by itself on the feeder pipe by using an inch worm mechanism, which is constructed by two gripper bodies that can fix the robot body on to the pipe, one extendable and contractible actuator, and a rotation actuator connected to the two gripper bodies to move forward and backward, and to rotate in a circumferential direction.

An automatic motorized feeder pipe inspection robot (자율 주행형 급수 배관 검사)

  • Choi, Chang-Hwan;Jeon, Pung-Woo;Choi, Yong-Je;Jeong, Seung-Ho;Kim, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.816-821
    • /
    • 2004
  • The outlet feeder pipe thinning in a PHWR (Pressured Heavy Water Reactor) is caused by high pressure steam flow inside the pipe, which is a well known degradation mechanism called FAC (Flow Assisted Corrosion). In order to monitor the degradation, the thickness of the outlet bends closed to the exit of the pressure tube should be measured and analyzed at every official overhaul. This paper develops an automatic feeder pipe inspection system that can minimize the irradiation dose by automating the measurement process. The robot can move by itself on the feeder pipe by using an inch worm mechanism, which is constructed by two gripper bodies that can fix their body on the pipe and one extendable and retractable body connected the two gripper bodies to move forward and backward.

  • PDF