• Title/Summary/Keyword: Steam method

Search Result 1,041, Processing Time 0.022 seconds

Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate

  • Qi, Jianan;Wanga, Jingquan;Feng, Yu
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.219-229
    • /
    • 2019
  • This paper presents an experimental study on the structural performance of an innovative ultra-high performance fiber reinforced concrete (UHPFRC) deck with coarse aggregate of composite bridge under shear force. Test parameters included curing method and shear span-to-height ratio. Test results indicated that more short fine cracks developed beside the existing cracks due to the randomly dispersed fibers, resulting in re-distributing and homogenizing of the concrete stress beside cracks and allowing for the occurrence of more cracks with small spacing compared to normal strength concrete beams. Curing methods, incorporating steam curing and natural curing, did not have obvious effect on the nominal bending cracking strength and the ultimate strength of the test specimens. Shear reinforcement need not be provided for UHPFRC decks with a fiber volume fraction of 2%. UHPFRC decks showed superior load resistance ability after the appearance of cracks and excellent post-cracking deformability. Lastly, the current shear provisions were evaluated by the test results.

Multivariate analysis of critical parameters influencing the reliability of thermal-hydraulic passive safety system

  • Olatubosun, Samuel Abiodun;Zhang, Zhijian
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.45-53
    • /
    • 2019
  • Thermal-hydraulic passive safety systems (PSSs) are incorporated into many advanced reactor designs on the bases of simplicity, economics and inherent safety nature. Several factors among which are the critical parameters (CPs) that influence failure and reliability of thermal-hydraulic (t-h) passive systems are now being explored. For simplicity, it is assumed in most reliability analyses that the CPs are independent whereas in practice this assumption is not always valid. There is need to critically examine the dependency influence of the CPs on reliability of the t-h passive systems at design stage and in operation to guarantee safety/better performance. In this paper, two multivariate analysis methods (covariance and conditional subjective probability density function) were presented and applied to a simple PSS. The methods followed a generalized procedure for evaluating t-h reliability based on dependency consideration. A passively water-cooled steam generator was used to demonstrate the dependency of the identified key CPs using the methods. The results obtained from the methods are in agreement and justified the need to consider the dependency of CPs in t-h reliability. For dependable t-h reliability, it is advisable to adopt all possible CPs and apply suitable multivariate method in dependency consideration of CPs among other factors.

Effects of Si Addition on the Microstructure and Properties of Cr-Al alloy for High Temperature Coating (고온 코팅용 Cr-Al합금의 미세조직 및 특성에 미치는 Si 첨가의 영향)

  • Kim, Jeong-Min;Kim, Il-Hyun;Kim, Hyun-Gil
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.7-10
    • /
    • 2019
  • Cr-Al alloys are attracting attention as oxidation resistant coating materials for high temperature metallic materials due to their excellent high temperature stability. However, the mechanical properties and oxidation resistance of Cr-Al alloys can be further enhanced, and such attempts are made in this study. To improve the properties of Cr-Al alloys, Si is added up to 5 wt%. Casting specimens with different amounts of Si content are prepared by a vacuum arc remelting method and isothermally heated under steam conditions at $1,100^{\circ}C$ for 1 hour. The as-cast microstructure of low Si alloys is mainly composed of only a Cr phase, while $Al_8Cr_5$ and $Cr_3Si$ phases are also observed in the 5 % Si alloy. In the high Si alloy, only Cr and $Cr_3Si$ phases remain after the isothermal heating at $1,100^{\circ}C$. It is found that Si additions slightly decrease the oxidation resistance of the Cr-Al alloy. However, the microhardness of the Cr-Al alloy is observed to increase with an increasing Si content.

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.

Nitric Oxide Production and Acetylcholinesterase Inhibitory of Activity Various Extracts from Codonopsis lanceolata by Steaming Times (증숙 더덕 용매별 추출물의 Nitric Oxide 생성 저해 효과 및 Acetylcholinesterase 저해활성)

  • Choi, Hyun-Suk;Choi, DuBok
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.3
    • /
    • pp.295-301
    • /
    • 2021
  • Steaming is a method that has traditionally been used for medicinal plant extraction. This study investigated nitrite oxide production, ferrous ion chelating activity, α-glucosidase, xanthine oxidase, and acetylcholinesterase inhibitory activities of ethanol, acetone and hot-water extracts of Codonopsis lanceolata prepared by steaming seven times. MTT assay showed that each extract was non-toxic up to a concentration of 700 ㎍/mL confirming that there was no cytotoxicity in all extracts. The α-glucosidase, xanthine oxidase, and acetylcholinesterase inhibitory activities exhibited by the hot-water extract obtained from steaming seven times were higher (83.1%) than the other extracts. Higher production of nitrite oxide and better ferrous chelating activity was recorded with hot-water extract compared to ethanol and acetone extracts. These results indicated that more steaming of Codonopsis lanceolata extracts would be required to validate the possibility of developing antioxidants. Also, further study is needed to determine if the components present in the tested extracts might be useful in the prevention of Alzheimer's disease. These results showed that hot-water extracts may be useful for their antioxidant and the production inhibitory activity of nitrite oxide. It will be helpful in the investigation of the constituent analysis of the steam-processed product of Codonopsis lanceolata.

Analysis and Evaluation of Separation Efficiency on Mass Flow of Mini Hydro Cyclone Separator Manufactured by 3D Printing (3D 프린팅을 적용한 미니 하이드로 싸이클론 분리기의 질량유량을 통한 분리효율 해석 및 평가)

  • Yi, Hyung-wook;Lee, Yeo-ul;Lee, Myung-won;Kwon, Je-young;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.89-96
    • /
    • 2021
  • In this study, a mini hydro cyclone was designed and manufactured to achieve an inlet flow rate of 2 L/min in the experiment, which was conducted using alumina powder with a specific gravity of 3.97. This hydro cyclone was studied for using in steam and water analysis system (SWAS) of thermal power plant and was manufactured by 3D printing. Numerical analysis was performed with Solidworks Flow Simulation, utilizing the reynolds stress method (RSM) of fluid multiphase flow analysis models. Experimental and numerical analysis were performed under the three conditions of inlet velocity 2.0, 4.0, and 6.0 m/s. The separation efficiency was over 80% at all inlet velocity conditions. At the inlet velocity 4m/s, the separation efficiency was the best, and it was confirmed that the efficiency was more than 90%.

Entropy and exergy analysis and optimization of the VVER nuclear power plant with a capacity of 1000 MW using the firefly optimization algorithm

  • Talebi, Saeed;Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2928-2938
    • /
    • 2020
  • A light water nuclear Reactor has been exergy analyzed, and the rate of irreversible exergy loss and exergy destruction is calculated for each of its components. The ratio of these losses compared to the total input exergy loss is calculated, which shows that most irreversible losses occur in the reactors, turbines, steam generators, respectively, as well as in the downstream operations. The main aim of this paper is to optimize the power plant using an innovative firefly algorithm and then to propose a novel strategy to improve the overall performance of the plant. As shown in the results, the exergy destruction rate of the plant decreased by 1.18% using the firefly method, and the exergy efficiency of the plant reached 29.3% comparing to the operational amount of 28.99%. Also, the results of the firefly optimization process compared to the Genetic algorithm and gravitational search algorithm to study the accuracy of the model for exergy analysis fitness problems in the power plants and the results of this comparison has shown that the results are nearly similar in the mentioned methods. However, the firefly is faster and more accurate in limited iterations.

A Highly Sensitive Indirect Enzyme-Linked Immunosorbent Assay (ELISA) Based on a Monoclonal Antibody Specific to Thermal Stable-Soluble Protein in Pork Fat for the Rapid Detection of Pork Fat Adulterated in Heat-Processed Beef Meatballs

  • Sol-A Kim;Jeong-Eun Lee;Dong-Hyun Kim;Song-min Lee;Hee-Kyeong Yang;Won-Bo Shim
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.989-1001
    • /
    • 2023
  • Processed foods containing pork fat tissue to improve flavor and gain economic benefit may cause severe issues for Muslims, Jews, and vegetarians. This study aimed to develop an indirect enzyme-linked immunosorbent assay (iELISA) based on a monoclonal antibody specific to thermal stable-soluble protein in pork fat tissue and apply it to detect pork fat tissue in heat-processed (autoclave, steam, roast, and fry) beef meatballs. To develop a sensitive iELISA, the optimal sample pre-cooking time, coating conditions, primary and secondary dilution time, and various buffer systems were tested. The change in the iELISA sensitivity with different 96-well microtiter microplates was confirmed. The detection limit of iELISA performed with an appropriate microplate was 0.015% (w/w) pork fat in raw and heat-treated beef. No cross-reactions to other meats or fats were shown. These results mean that the iELISA can be used as an analytical method to detect trace amounts of pork fat mixed in beef.

Dynamic numerical analysis of the effect of tunneling-induced vibration on combined heat and power plant structures under operation

  • Changwon Kwak;Mintaek Yoo;Innjoon Park
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.497-505
    • /
    • 2024
  • The power plant is a major infrastructure composed of essential machinery such as Turbine Generators (TG), Heat Recovery Steam Generators (HRSG), etc. Particularly, Combined Heat & Power Plants (CHP) are highly efficient power plants that simultaneously produce heat and electricity. Recently, cases have emerged where railway tunnels are being constructed beneath such power plants due to the underground development of urban rail transportation. Therefore, there is a pressing need to assess the impact of vibrations induced by blasting excavation during the construction of railway tunnels beneath the power plant, as well as the vibrations during railway operation, on the major machinery foundations and structures within the power plant. In this study, criteria for evaluating the vibration impact on key vibration-sensitive structures are summarized, and evaluation standards based on international criteria are established. Based on this, the study examines the vibration impact during the blasting excavation method of NATM tunnels beneath the operational power plant. Furthermore, subsequent railway operation, specifically focusing on the impact of train vibrations on Turbine foundations, Pump foundations, and District Heating pipelines using 3D dynamic numerical analysis. The results indicate that vibration values corresponding to up to 97.3% of the evaluation criteria are derived based on the numerical analysis. However, considering the significance of power plant-related structures, additional measures to reduce vibrations are proposed, including further test blasting, alteration of blasting patterns, reducing the charge per delay, or decreasing advance.

Structural Integrity Assessment of High-Strength Anchor Bolt in Nuclear Power Plant based on Fracture Mechanics Concept (원자력발전소 고강도 앵커 볼트의 파괴역학적 건전성평가)

  • Lim, Eun-Mo;Huh, Nam-Su;Shim, Hee-Jin;Oh, Chang-Kyun;Kim, Hyun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.875-881
    • /
    • 2013
  • The failure of a bolted joint owing to stress corrosion cracking (SCC) has been considered one of the most important structural integrity issues in a nuclear power plant. In this study, the failure possibility of bolting, which is used to support the steam generator of a pressurized water reactor, owing to SCC and brittle fracture was evaluated in accordance with guidelines proposed by the Electric Power Research Institute, which are called the Reference Flaw Factor method. For this evaluation, first, detailed finite element stress analyses were conducted to obtain the actual nominal stresses of bolting in which either service loads or bolt preloads were considered. Based on these nominal stresses, the structural integrity of bolting was addressed from the viewpoints of SCC and toughness. In addition, the accuracy of the EPRI Reference Flaw Factor for assessing bolting failure was investigated using finite element fracture mechanics analyses.