• Title/Summary/Keyword: Steam iron

Search Result 52, Processing Time 0.023 seconds

Characteristics of Redox Agent with Additive in Steam-Iron Process for the High Purity Hydrogen Production (고순도 수소 생성을 위한 SIP법에서 첨가제에 따른 환원 특성)

  • Jeon, Bup-Ju;Kim, Sun-Myung;Park, Ji-Hun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.340-348
    • /
    • 2011
  • Effects of various inorganic-metal oxide (Zr, Zn, Si, Al and Ca as promoters and stabilizers) additive on the reduction rate of iron oxide and the composition of forming hydrogen using the steam-iron cycle operation was investigated. The reduction rate of redox agent with additive was determined from weight change by TGA. The changes of weight loss and reduction rate according to redox agent with various additive affected the hydrogen purity and cycle stability of the process. The cyclic micro reactor showed that hydrogen purity exceeding 95% could be obtained by the water splitting with Si/Fe, Zn/Fe, Zr/Fe redox agents. The redox agents with these elements had an affect on redox cycle stability as a good stabilizer for forming hydrogen by the steam-iron process.

Study on hydrogen embrittlement of fuel line for PEMFC (PEMFC 연료 공급관의 수소취성에 관한 연구)

  • Park, Kwang-Jin;Kim, Jung-Hyun;Jeong, Jae-Hwa;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1992-1996
    • /
    • 2007
  • This study focuses on the hydrogen embrittlement of iron tube for fuel line of PEMFC (Proton Exchange Membrane Fuel Cell). PEMFC is operated by feed of hydrogen as a reactant and steam for proton conductivity of membrane. However, the environment with hydrogen and steam occur the hydrogen-induced degradation in BOP system. When iron tube was exposed to hydrogen and steam condition for 24 hours, the oxide layer on the surface was decreased by reduction. When the ambient temperature was 90$^{\circ}C$ micro cracks were found on the surface than any other temperature. The mechanical strength of iron tube was 3% lower than that of non-experiment tube. Maximum tensile stress was decreased 8%.

  • PDF

Effect of Temperature on Dissolution and Adsorption of Iron Oxide (온도 변화에 따른 철산화물의 용해 및 흡착 특성)

  • 안현경;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.198-202
    • /
    • 2002
  • Ethanolamine (ETA), instead of ammonia, increases pH in the secondary system water and inhibits the corrosion of iron, which improves the integrity of the steam generator tubes. The different physicochemical properties of ETA from ammonia provide the different effect on the dissolution and adsorption of corrosion products entering the steam generator and thus on the hideout returns of ionic impurities in the steam generator sludge pile. The objective of this study was to investigate those properties with increasing temperature. ETA is more adsorbed onto the iron oxides, which increases the solubility of them and also lowers the hideout returns due to the reduced impurities adsorbed.

  • PDF

High Purity Hydrogen Production by Redox Cycle Operation (산화-환원 싸이클 조업에 의한 고순도 수소생성)

  • Jeon, Bup-Ju;Park, Ji-Hun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

The effect of Rh/Ce/Zr additives on the redox cycling of iron oxide for hydrogen storage (산화철의 환원-산화 반응을 이용한 수소저장에 미치는 Rh/Ce/Zr의 효과)

  • Lee, Dong-Hee;Cha, Kwang-Seo;Park, Chu-Sik;Kang, Kung-Soo;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.49-52
    • /
    • 2007
  • We investigated hydrogen storage and production properties using redox system of iron oxide($Fe_{3}O_{4}$ + $4H_{2}$ ${\leftrightarrows}$ 3Fe + $4H_{2}O$) modified with rhodium, ceria and zirconia under atmospheric pressure. Reduction of iron oxide with hydrogen(hydrogen storage) and re-oxidation of reduced iron oxide with steam(hydrogen evolution) was carried out using a temperature programmed reaction(TPR) technique. On the temperature programmed studies, the effects of amounts of cerium and zirconium on the re-oxidation rate of partial reduced iron oxides were increased with increasing metal additives amount, but the rhodium amount showed little effect on the re-oxidation rate. On the thermal studies, the re-oxidation rates were enhanced with increasing temperature(300 $^{\circ}C$ < 350 $^{\circ}C$).

  • PDF

Analysis on Formation of Corrosion Products in Secondary Steam-Water System of Nuclear Power Plant (원자력발전소 2차측 습증기계통 주요지점별 부식 발생현황 분석)

  • Lee, Kyunghee;Han, Hoseok;Shin, Sungyong;Sung, Kibang;Rhee, Youngwoo
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.138-147
    • /
    • 2019
  • Pipes and components of the secondary system in the pressurized water reactor (PWR) are mainly comprised of manufactured carbon steel. Thus, the generated carbon steel corrosion products are transported into the steam generator and deposited, thereby deteriorating the integrity of the steam generator. Environmental condition in the secondary system of the PWRs differs across different locations. So, the corrosion rate and types of corrosion products depend on specific locations in the secondary system. In this study, the quantity and chemical compositions of corrosion products generated in various locations that vary in different temperatures and chemistry conditions were investigated. As a result of evaluating the PWR "Unit A" that is in current operation, the amount of corrosion products generated in the section of high temperature feedwater system was identified as the largest source in the secondary system. Major components of corrosion products were iron oxides such as magnetite, hematite, and lepidocrocite.

Study on the Pressurized Steam Reforming of Natural Gas and Biogas Mixed Cokes Oven Gas (코크스오븐가스 기반 천연가스, 바이오가스가 혼합된 연료의 가압 수증기 개질 반응에 관한 연구)

  • CHEON, HYUNGJUN;HAN, GWANGWOO;BAE, JOONGMYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.111-118
    • /
    • 2019
  • Greenhouse gas emissions have a profound effect on global warming. Various environmental regulations have been introduced to reduce the emissions. The largest amount of greenhouse gases, including carbon dioxide, is produced in the steel industry. To decrease carbon dioxide emission, hydrogen-based iron oxide reduction, which can replace carbon-based reduction has received a great attention. Iron production generates various by-product gases, such as cokes oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz gas (LDG). In particular, COG, due to its high concentrations of hydrogen and methane, can be reformed to become a major source of hydrogen for reducing iron oxide. Nevertheless, continuous COG cannot be supplied under actual operation condition of steel industry. To solve this problem, this study proposed to use two alternative COG-based fuel mixtures; one with natural gas and the other with biogas. Reforming study on two types of mixed gas were carried out to evaluate catalyst performance under a variety of operating conditions. In addition, methane conversion and product composition were investigated both theoretically and experimentally.

The Steam Temperature Control of Renovated Boiler in 100MW Power Plant (100MW 발전소 개조 보일러의 증기온도 제어)

  • Lim, Geon-Pyo;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1935-1940
    • /
    • 2011
  • The control logic of steam temperature was redesigned, tested and applied to the power plant after its steam temperature equipments had been revised. This power plant use the ancillary gas gotten in the process of making iron in the steel mill. The boiler of power plant has the superheater and reheater to make the superheated steam. The superheater and reheater have the spray valve to control their temperature. The reheater has the gas bypass damper additionally in this plant. The control logics were redesigned in cascade forms and the initial parameters of control logics were calculated from the several step tests. The final parameters could be obtained through the several repeated tests and the feedforward functions were added by temperature deviation and air flow. The power plant is being commercially-operated normally by improved control logics and It is expected that this improved controls help the efficiency improvement and safe operation of plant.

Experiment on Coolability through External Reactor Vessel Cooling according to RPV Insulation Design (국내원전 단열재 설계특성에 따른 외벽냉각 효과검증 실험)

  • Kang, Kyoung-Ho;Park, Rae-Joon;Kim, Snag-Baik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1578-1583
    • /
    • 2003
  • LAVA-ERVC experiments have been performed to investigate the effect of insulation design features on the coolability in case of the external reactor vessel cooling (ERVC). All the 4 tests have been performed using Alumina iron thermite melt as a corium simulant. Due to the limited steam venting through the insulation, steam binding occurred inside the annulus in the KSNP case simulation. On the contrary, in the tests which were performed for simulating the APR1400 insulation design, sufficient water ingression and steam venting through the insulation lead to effective cool down of the vessel characterized by nucleate boiling. It could be found from the experimental results that modification of the insulation design allowing sufficient ventilation could increase the positive effects of the external reactor vessel cooling.

  • PDF

Effect of Metal Oxide Additives on Hydrogen Production in the Steam-Iron Process (철-수증기 반응에 의한 수소생성에 미치는 금속산화물의 첨가효과)

  • Lee, Dae-Haeng;Moon, Hee;Park, Heung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 1991
  • The production of hydrogen from steam by reduced iron with additives such as CuO, $In_2O_3$, $MoO_3$ and $WO_3$ has been kinetically investigated. It was shown that all additives have a promoting effect on reaction activity in the order of $$MoO_3{\gg}In_2O_3{\sim_=}WO_3{\sim_=}CuO$$. The shrinking core model was applied to predict the complete conversion time and the results were quite comparable with experimental values. The reaction was carried out in a fixed flow reactor packed with reduced iron with 1 wt % of additives under the conditions, $600-750^{\circ}C$, Ar flow rate of 1 L/min and steam partial pressure of 0.085 atm. The apparent activation energies were 14.2, 20.9, 21.3, 22.4 and 27.9 kJ/mol with $MoO_3$, $In_2O_3$, $WO_3$, CuO and without additive, respectively.

  • PDF