• 제목/요약/키워드: Steam heat treatment

검색결과 99건 처리시간 0.029초

Scientific exploration on physiological basis of Svedana Karma (Sudation): A clinical application of heat stress.

  • Yadav, Saurabh;Verma, Vandana;Abhinav, Abhinav
    • 셀메드
    • /
    • 제9권3호
    • /
    • pp.4.1-4.8
    • /
    • 2019
  • Now researchers have focused attention on exploring the mechanism of acute responses of heat stress given in heat therapy that ultimately promotes the long term health benefits. Heat therapy is not a new idea rather it was practiced since thousands years back in the form of hot bath, sauna bath, steam room. Similarly in Ayurveda there is very comprehensive description of heat therapy in the form of Svedan karma (Sudation therapy). Svedan is a process to induce sweating artificially in a patient who had already undergone Snehan. Svedan is applied for purification of body, as well as in management of various disorders originated due to vitiation of Vata, Kapha Dosha, Meda Dhatu and musculoskeletal disorders. It produces various beneficial effects by augmenting the Agni like clears the channels, liquefies the deposited Dosha, regulates Vata Dosha, helps in removal and pacification of Dosha, augments metabolism (Agni Deepan), increases appetite, flexibility in body parts, softness and shining of skin, removes coldness, stiffness, drowsiness, improves joint motility. However, Svedana karma is vastly used by Ayurveda Physicians in treatment of various disorders but the mechanisms of beneficial effects produced by Svedan Karma are yet not completely explored on scientific basis. In this article, we will discuss and try to establish a possible mechanism of action of Svedana karma in relation to heat stress, mitochondrial adaptation, heat shock protein (HSP) and glucocorticoids as these are secreted under stressful conditions.

열처리 방법에 따른 표고버섯의 이화학적 특성 및 영양학적 분석 (Effects of Various Thermal Treatments on Physicochemical and Nutritional Properties of Shiitake Mushrooms)

  • 이중규;김광일;황인국;유선미;민상기;최미정
    • 한국식품영양과학회지
    • /
    • 제44권6호
    • /
    • pp.874-881
    • /
    • 2015
  • 본 연구는 열수 침지, 증기 및 볶음 처리가 표고버섯에 미치는 이화학적 분석 및 영양성분 분석을 통해 최적 열처리 조건을 확립하고자 진행하였다. 소비자들이 상품을 평가할 때 1차적으로 먼저 관찰되는 색도와 경도를 측정하고 추가로 pH 측정 등으로 인한 이화학적 결과로 최적 조건을 선정한 뒤에 그 조건들에 대해서 영양학적 및 미생물 검사를 실시하였다. 색도는 열처리 시간이 길어질수록 색의 변색 정도가 증가하여 뚜렷한 차이를 나타내었다. pH 값은 열수 침지 처리의 경우 pH 증가량이 가장 높았으며 처리 시간이 지속될수록 pH가 증가하는 경향을 나타내었다. 다른 처리군의 경우 일정 시간의 처리 시간 이후에는 유의적인 차이를 보이지 않았다. 경도에서는 열수 침지와 볶음 처리의 경우 1분 이내의 열처리만으로도 경도가 감소하는 경향을 보였으며, 증기 처리의 경우 1분 동안 경도가 유지되는 결과를 보였다. 일반 성분 분석 결과는 증기 처리가 가장 원물에 가까운 결과를 나타냈다. 유기산 함량은 증기 처리에서 유기산 함량 감소율이 가장 낮았다. 또한 3분간 증기 처리를 하였을 때 미생물의 사멸 효과가 가장 높았다. 열수 침지 처리나 볶음 처리의 경우 전체적으로 증기 처리한 시료에 비해서 영양성분 함량이 줄어드는 경향을 나타냈다. 따라서 표고버섯을 증기 처리 방법으로 열처리하는 것이 다른 열처리군에 비해서 최적으로 나타났다. 하지만 본 연구에서는 물리화학 및 영양학적 성분의 변화만을 분석하였기 때문에 실제 식품 산업이나 공정에 적용하기 위해서는 대용량 처리 시에 발생하는 문제들과 관련된 추가적인 연구를 필요로 할 것이다.

연소 또는 소각 과정에서 발생하는 배기가스의 폐열 회수 설계 방법에 관한 연구 (Study on the Heat Recovery Design Methods for the Flue Gas from Combustion and Incineration Processes)

  • 이찬;정봉진
    • 청정기술
    • /
    • 제5권2호
    • /
    • pp.53-61
    • /
    • 1999
  • 대형 산업용 환경폐기물 처리 및 열병합 플랜트의 연소 및 소각 공정 후 발생하는 배기가스의 폐열회수장치 설계 방법을 제시하였다. 본 연구는 폐열회수장치의 기본 설계 개념을 폐열회수를 위한 보일러와 폐열을 이용한 증기 동력 사이클로 구성되는 것으로 가정하였고, 폐열회수장치에 필요한 각 구성요소들에 대한 모델링 기법과 그에 따른 설계 기준 및 설계 개념을 기술하였다. 또한 본 설계방법을 이용하여, 동일한 배기가스 조건에 대해, 폐열회수 보일러의 작동 압력 및 폐열회수 열교환기 설계에 따라 폐열회수장치의 열성능이 어떻게 변화되는지를 검토하였다.

  • PDF

증기발생기 전열관의 정밀성형을 위한 스프링 백 저감에 관한 연구 (A Study on the Reduction of Spring Back for Precision Forming of Steam Generator Tube)

  • 서영성;김용완;김종인
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.102-105
    • /
    • 2001
  • The spring back taking place after the coiling process of steam generator tube leads to the dimensional inaccuracy. In order to reduce the spring back, tension force was applied to the one end of the tube during forming. In this work, parametric study using FEM was performed to find the appropriate magnitude of tension force. The force that induces minimum suing back was found by simultaneously taking account of suing back amount, cross-sectional ovality, and thickness of the tube wall after deformation. In addition, stress relieving by heat treatment was also simulated as an alternative to the former method. The latter was found to be more effective under the given constraints.

  • PDF

나선형 증기 발생기 튜브의 정밀성형을 위한 스프링백 제어 연구 (A Study on the Control of Spring Back for the Precision Forming of the Steam Generator Helical Tube)

  • 서영성;김용완;김종인
    • 소성∙가공
    • /
    • 제11권3호
    • /
    • pp.238-245
    • /
    • 2002
  • The spring back taking place after the coiling process of steam generator tube leads to the dimensional inaccuracy. In order to reduce the spring back, tension force was applied to the one end of the tube during forming. In this work, parametric study using FEM was performed to find the appropriate magnitude of tension force. The force that induces minimum spring back was found by simultaneously taking account if spring back amount, cross-sectional ovality, and thickness of the tube wall after deformation. In addition, stress relieving by heat treatment was also simulated as an alternative to the former method. The latter was found to be more effective under the given constraints.

Fatigue Crack Propagation Behavior in Butt Weldment of SA106 Gr.C Main Steam Pipe Steel

  • Kim, Eung-Seon;Jang, Chan-Su;Kim, In-Sup
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(3)
    • /
    • pp.92-97
    • /
    • 1996
  • The fatigue crack propagation behavior in SA106 Gr.C main steam pipe weld joint was investigated in air environment. Crack growth rate tests were conducted on base metal and weld metal at load ratio of 0.1 and 0.3 and at frequency of 10Hz. The fatigue crack growth rates of the base metal and the weld metal were above the ASME reference line and the fatigue crack propagation rate of the weld metal was higher than those of the base metal. Fatigue crack growth rate increased with increasing the load ratio and the effect of the load ratio was more significant in the weld metal. The post weld heat treatment increased the fatigue crack growth rates of the base metal by reducing compressive residual stress and decreased those of the weld metal by reducing weld defects.

  • PDF

비투멘 유체 분리를 위한 오일처리공정의 설계와 평가 (Design and Assessment of an Oil-treatment Process for Bitumen Separation)

  • 정문;이상준;신흥식;조은비;황인주;강춘형
    • 한국유체기계학회 논문집
    • /
    • 제19권3호
    • /
    • pp.5-9
    • /
    • 2016
  • The purpose of this paper is to define criteria to be used as part of the engineering design for an oil sands plant equipped with the steam assisted gravity drainage process. In this effort, the oil treatment process of an oil sands plant on a pilot scale was focused for detailed investigation. The thermodynamic properties of the process fluid, which is mainly composed of bitumen and water, were estimated with the CPA model. The commercial tool aspen HYSYS was used for the analysis throughout this work along with the provided input data and some necessary assumptions. From the simulation results, the heat and mass balances for a 300 BPD plant were established in order to define standard data for its modular design. In particular, the basis of design for equipment size, heat transfer areas, capital cost and operation cost was extensively discussed.

HSC발전소 터빈용 초내열합금 Alloy 617 및 263 용접부의 미세조직에 미치는 후열처리의 영향 (Effects of Post Weld Heat Treatment on Microstructures of Alloy 617 and 263 Welds for Turbines of HSC Power Plants)

  • 김정길;심덕남;박해지
    • Journal of Welding and Joining
    • /
    • 제34권3호
    • /
    • pp.52-60
    • /
    • 2016
  • Recently nickel based superalloys are extensively being regarded as the materials for the steam turbine parts for hyper super critical (HSC) power plants working at the temperature over $700^{\circ}C$, since the materials have excellent strength and corrosion resistance in high temperature. In this paper, alloy 617 of solution strengthened material and alloy 263 of ${\gamma}^{\prime}$-precipitation strengthened material were prepared as the testing materials for HSC plants each other. Post weld heat treatment (PWHT) was conducted with the gas tungsten arc (GTA) welded specimens. The microstructure of the base metals and weld metals were investigated with Electron Probe Micro-Analysis (EPMA) and Scanning Transmission Electron Microscope (STEM). The experimental results revealed that Ti-Mo carbides were formed in both of the base metals and segregation of Co and Mo in both of the weld metals before PWHT and PWHT leaded to precipitation of various carbides such as Mo carbides in the specimens. Furthermore, fine ${\gamma}^{\prime}$ particles, that were not precipitated in the specimens before PWHT, were observed in base metal as well as in the weld metal of alloy 263 after PWHT.

Appropriate Soil Heat Treatment Promotes Growth and Disease Suppression of Panax notoginseng by Interfering with the Bacterial Community

  • Li, Ying-Bin;Zhang, Zhi-Ping;Yuan, Ye;Huang, Hui-Chuan;Mei, Xin-Yue;Du, Fen;Yang, Min;Liu, Yi-Xiang;Zhu, Shu-Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.294-301
    • /
    • 2022
  • In our greenhouse experiment, soil heat treatment groups (50, 80, and 121℃) significantly promoted growth and disease suppression of Panax notoginseng in consecutively cultivated soil (CCS) samples (p < 0.01), and 80℃ worked better than 50℃ and 121℃ (p < 0.01). Furthermore, we found that heat treatment at 80℃ changes the microbial diversity in CCS, and the inhibition ratios of culturable microorganisms, such as fungi and actinomycetes, were nearly 100%. However, the heat-tolerant bacterial community was preserved. The 16S rRNA gene and internal transcribed spacer (ITS) sequencing analyses indicated that the soil heat treatment had a greater effect on the Chao1 index and Shannon's diversity index of bacteria than fungi, and the relative abundances of Firmicutes and Proteobacteria were significantly higher than without heating (80 and 121℃, p < 0.05). Soil probiotic bacteria, such as Bacillus (67%), Sporosarcina (9%), Paenibacillus (6%), Paenisporosarcina (6%), and Cohnella (4%), remained in the soil after the 80℃ and 121℃ heat treatments. Although steam increased the relative abundances of most of the heat-tolerant microbes before sowing, richness and diversity gradually recovered to the level of CCS, regardless of fungi or bacteria, after replanting. Thus, we added heat-tolerant microbes (such as Bacillus) after steaming, which reduced the relative abundance of pathogens, recruited antagonistic bacteria, and provided a long-term protective effect compared to the steaming and Bacillus alone (p < 0.05). Taken together, the current study provides novel insight into sustainable agriculture in a consecutively cultivated system.

Impact of thermal and chemical treatment on the mechanical properties of E110 and E110G cladding tubes

  • Kiraly, M.;Hozer, Z.;Horvath, M.;Novotny, T.;Perez-Fero, E.;Ver, N.
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.518-525
    • /
    • 2019
  • The mechanical and corrosion behavior of the Russian zirconium fuel cladding alloy E110, predominantly used in VVERs, has been investigated for many decades. The recent commercialization of a new, optimized E110 alloy, produced on a sponge zirconium basis, gave the opportunity to compare the mechanical properties of the old and the new E110 fuel claddings. Axial and tangential tensile test experiments were performed with samples from both claddings in the MTA EK. Due to the anisotropy of the cladding tubes, the axial tensile strength was 10-15% higher than the tangential (measured by ring tensile tests). The tensile strength of the new E110G alloy was 11% higher than that of the E110 cladding at room temperature. Some samples underwent chemical treatment - slight oxidation in steam or hydrogenation - or heat treatment - in argon atmosphere at temperatures between 600 and $1000^{\circ}C$. The heat treatment during the oxidation had more significant effect on the tensile strength of the claddings than the oxidation itself, which lowered the tensile strength as the thickness of the metal decreased. The hydrogenation of the cladding samples slightly lowered the tensile strength and the samples but they remained ductile even at room temperature.