• Title/Summary/Keyword: Steam efficiency

Search Result 447, Processing Time 0.021 seconds

Parametric Study of SOFC System Efficiency Under Operation Conditions of Butane Reformer (부탄 개질기 운전조건에 따른 SOFC 시스템 효율에 대한 연구)

  • Kim, Sun-Young;Baek, Seung-Whan;Bae, Gyu-Jong;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.341-347
    • /
    • 2010
  • In this study, the efficiency of a solid-oxide fuel cell (SOFC) system with a steam reformer or prereformer was analyzed under various conditions. The main components of the system are the reformer, SOFC, and water boiling heat recovery system. Endothermic and exothermic reactions occur in the reformer and SOFC, respectively. Hence, the thermal management of the SOFC system greatly influences the SOFC system efficiency. First, the efficiencies of SOFC systems with a steam reformer and a prereformer are compared. The system with the prereformer was more efficient than the one with steam reformer due to less heat loss. Second, the system efficiencies under various prereformer operating conditions were analyzed. The system efficiency was a function of the heat requirement of the system. The efficiency increased with an increase in the operating temperature of the prereformer, and the maximum system efficiency was observed at $450^{\circ}C$ for a S/C of 2.0.

Numerical Study on Geometries and Operating Parameters of a Steam Reformer for Hydrogen Production (수소 생산을 위한 수증기 개질기의 형상 변화와 작동 조건에 대한 수치해석 연구)

  • Byun, Kang-Soo;Lee, Jae-Seong;Kim, Ho-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The main objective of this paper is to investigate characteristic of steam reformer at various geometries and operating conditions. In this paper, the steam reforming is studied by a numerical method and three dimensional simulations were used for effective analytical study. User - Defined Function (UDF) was used to simultaneously calculate reforming and combustion reaction. And the numerical model is validated with experimental results at the same operating conditions. In order to understand the relationship between operating conditions such as gas hourly space velocity(GHSV), mass flow rate of combustor inlet, various numerical investigations are carries out for various geometries. Numerical results show that cylindrical geometry is more effective than rectangular geometry for heat transfer to reactors and reforming efficiency. As mass flow rate of combustor inlet increase, reaction occurs more faster and temperature increase with each geometry. On the other hand, reaction and hydrogen conversion decrease as mass flow rate of reactor decreases.

Conceptual design of an expander for waste heat recovery of an automobile exhaust gas (자동차 배기가스 폐열 회수용 팽창기 개념설계)

  • Kim, Hyun-Jae;Kim, You-Chan;Kim, Hyun-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.237-242
    • /
    • 2009
  • A steam Rankine cycle was considered to recover waste heat from the exhaust gas of an automobile. Conceptual design of a swash plate type expander was practiced to convert steam heat to shaft power. With the steam pressure and temperature of 35 bar and $300^{\circ}C$ at the expander inlet, respectively, the expander was estimated to produce the shaft power output of about 1.93 kW from the exhaust gas waste heat of 20 kW. The expander output increased linearly accordingly to the amount of exhaust gas waste heat in the range of from 10-40 kW, and the Rankine cycle efficiency was more or less constant at about 9.6% regardless of the waste heat amount.

  • PDF

Steam Turbine Stage Design Using Flow Analysis (유동 해석을 이용한 증기 터빈 Stage 설계)

  • Kwon, G.B.;Kim, Y,S.;Cho, S.H.;Im, H.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.309-314
    • /
    • 2001
  • The high efficient steam turbine stage has been analyzed with the help of the 3-dimensional analysis tool. To increase the efficiency of steam turbine stage, the nozzle has to be designed by using the 3-dimensional stacking method. And the bucket has to be designed to cope with the exit flow of nozzle. To verify the stage design, therefore, the numerical analysis of the steam turbine stage was conducted. In this design, CFX-TASCflow was employed to predict the steam flow of the steam turbine stage. The numerical analysis was performed in parallel calculation by using the HP N4000 8 CPUs machine. The result showed the numerical analysis could be used to help to design the steam turbine stage.

  • PDF

Air Similarity Test for the Evaluation of Aerodynamic Performance of Steam Turbine (스팀터빈의 공력성능 평가를 위한 공기 상사실험)

  • Lim, Byeung-Jun;Lee, Eun-Seok;Lee, Ik-Hyoung;Kim, Young-Sang;Kwon, Gee-Bum
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.73-79
    • /
    • 2003
  • The steam turbine efficiency is an important factor in power plant. Accurate evaluation of steam turbine performance is essential. However, it is not easy to evaluate the steam turbine performance due to its high temperature and high pressure circumstance. Therefore most steam turbine performance tests were conducted by air similarity test. This paper described a test program for air similarity test of steam turbine at Korea Aerospace Research Institute. A test facility has been designed and built to evaluate aerodynamic performance of turbines. The test facility consists of air supply system, single stage test section, power absorption system, instrumentation and auxiliary system. For evaluation of steam turbine performance, the test of single stage axial turbine air similarity performance was conducted and uncertainty analysis was performed.

  • PDF

Temperature Control of Superheater Steam in Thermal Power Plant (화력발전소의 과열기증기의 온도제어)

  • Shin, Hwi-Beom;Lee, Soon-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2006-2011
    • /
    • 2010
  • The superheater in the thermal power plant makes the wet steam into the dry steam with high temperature and high pressure by using the boiler heat. The dry steam pressure rotates the turbine-generator system. The efficiency and life time of the boiler heavily depends on the steam temperature regulation. The steam temperature can be deviated from the reference by the MW demand of the power plant. It is therefore required that the PI(proportional-integral) controller should be robust against the disturbance such as the MW demand. In this paper, the PI controller with the integral state predictor is proposed and applied to regulate the steam temperature of the superheater, and it is compared with the conventional PI controller operated in the thermal power plant in view of control performance.

Processes of Outflow of the Boiling Steam-Water Mixture in the Widening Part of Hydro-Steam Turbine Nozzles

  • Leonid, Serejkin;Boris, Shifrin;Victor, Perov;Alexandr, Goldin
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.178-184
    • /
    • 2022
  • Renewable energy sources based on solar radiation, wind energy, geothermal energy, and biomass energy have now reached the level of industrial application. A new way to generate electricity using low-potential heat is to install a hydro-steam turbine. In hydro-steam turbines, hot water is supplied directly to turbine rotor nozzles without prior separation into steam and water in separators, which significantly increases the efficiency of hot water energy use. Such turbines are suggested to be used as autonomous energy sources in geothermal heating systems, heating water boilers and cooling systems of chemical reactors, metallurgical furnaces, etc. The authors conclude that the installation of hydro-steam turbines in heating plants and process boiler plants can also be effective if the used exhaust steam-water mixture at the turbine outlet is used to heat the network water or as return water.

STEAM DRUM DESIGN FOR A HRSG BASED ON CFD (수치해석을 이용한 HRSG(Heat Recovery Steam Generator) 증기 드럼 설계)

  • Ahn, J.;Lee, Y.S.;Kim, J.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.67-72
    • /
    • 2011
  • HRSG (Heat Recovery Steam Generator) is a boiler to recover heat from the exhaust gas of an engine and to generate steam for more power generation or process. For the HRSG, water-tube type boiler is commonly adopted to accommodate the working pressure or capacity requirement of the system. The water-tube type boiler has a steam drum to separate steam from the water-steam mixture supplied from the evaporator tube (riser). The drum should be sized properly to separate the steam by the gravity and auxiliary internals, such as a demister, which are installed to filter the steam. To size the steam drum and to estimate the filter efficiency of drum internals, the velocity distribution inside the drum needs to be identified. In the present study, a series of CFD has been conducted to find the velocity distributions inside steam drums for conventional HRSGs and water-tube type industrial boilers. The velocity distributions obtained from the simulation have been normalized and a correlation to predict them has been found. The correlation is applied to the steam drum design by determining a proper position of a demister to show proper separation performance.

Development of Turbo Steam Compressors for MVR System (MVR 담수화장비용 터보 증기압축기의 개발)

  • Oh, Jong-Sik;Sung, Beong-Il;Hyun, Yong-Ik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.482-486
    • /
    • 2003
  • A high-efficiency turbo steam compressor has been successfully developed for the MVR desalination system, first one in Korea. The state-of-the-art design methods using real gas properties were applied to get all the aerodynamic design results. Bull and pinion gear trains, tilting-pad bearings and investment cast impellers were developed also to be integrated into the integral gear-driven turbo steam compressor. System tests show highly efficient performance.

  • PDF

Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation (연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;QUACH, THAI QUYEN;AHN, KOOK YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.