• 제목/요약/키워드: Steam Turbine Blade

검색결과 73건 처리시간 0.02초

터빈 블레이드 온도 변화를 고려한 증기분사 가스터빈 열병합발전 시스템의 성능해석 (Performance Analysis of a Steam Injected Gas Turbine Combined Heat and Power System Considering Turbine Blade Temperature Change)

  • 강수영;김정호;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.18-24
    • /
    • 2012
  • This study simulated the operation of a steam injected gas turbine combined heat and power (CHP) system. A full off-design analysis was carried out to examine the change in the turbine blade temperature caused by steam injection. The prediction of turbine blade temperature was performed for the operating modes suggested in the previous study where the limitation of compressor surge margin reduction was analyzed in the steam injected gas turbine. It was found that both the fully injected and partially injected operations suggested in the previous study would cause the blade temperature to exceed that of the pure CHP operation and the under-firing operation would provide too low blade temperature. An optimal operation was proposed where both the turbine inlet temperature and the injection amount were modulated to keep both the reference turbine blade temperature and the minimum compressor surge margin. The modulation was intended to maintain a stable compressor operation and turbine life. It was shown that the optimal operation would provide a larger power output than the under-firing operation and a higher efficiency than the original partially injected operation.

증기터빈 익렬유동에 관한 실험적 연구 (Experimental Study on Stream Turbine Cascade Flow)

  • 권순범;윤의수;김병지
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2177-2183
    • /
    • 1994
  • The rapid expansion or condensible gas such as moist air of steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the supersonic cascade flow of low pressure steam turbine, the entropy of the flow is increased, and the efficiency of the turbine is decreased. In the present study, to investigate the flow of moist air in 2-dimensional cascade made as the configuration of the tip section of the last actual steam turbine moving blade, the static pressure at both sides of pressure and suction of blade are measured by static pressure taps and the distribution of Mach number on both surfaces of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in a 2-dimensional stationary cascade of a practical steam turbine blade are clearly identified.

복합화력발전소 증기터빈 동익 손상 원인분석 (Root Cause Analysis on the Steam Turbine Blade Damage of the Combined Cycle Power Plant)

  • 강명수;김계연;윤완노;이우광
    • 동력기계공학회지
    • /
    • 제12권4호
    • /
    • pp.57-63
    • /
    • 2008
  • The last stage blade of the low pressure steam turbine remarkably affects turbine plant performance and availability Turbine manufacturers are continuously developing the low pressure last stage blades using the latest technology in order to achieve higher reliability and improved efficiency. They tend to lengthen the last stage blade and apply shrouds at the blades to enhance turbine efficiency. The long blades increase the blade tip circumferential speed and water droplet erosion at shroud is anticipated. Parts of integral shrouds of the last stage 40 inch blades were cracked and liberated recently in a combined cycle power plant. In order to analyze the root cause of the last stage blades shroud cracks, we investigated operational history, heat balance diagram, damaged blades shape, fractured surface of damaged blades, microstructure examination and design data, etc. Root causes were analyzed as the improper material and design of the blade. Notches induced by erosion and blade shroud were failed eventually by high cycle fatigue. This paper describes the root cause analysis and countermeasures for the steam turbine last stage blade shroud cracks of the combined cycle power plant.

  • PDF

초음파탐상 검사를 이용한 증기터빈 블레이드 루트 휭거 균열 탐지기법 개발 (Development of Crack Detecting Method at Steam Turbine Blade Root Finger using Ultrasonic Test)

  • 윤완노;김준성;강명수;김덕남
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.738-744
    • /
    • 2011
  • The reliability of blade root fixing section is required to endure the centrifugal force and vibration stress for the last stage blade of steam turbine in thermal power plant. Most of the domestic steam turbine last stage blades have finger type roots. The finger type blade is very complex, so the inspection had been performed only on the exposed fixing pin cross-section area due to the difficulty of inspection. But the centrifugal force and vibration stress are also applied at the blade root finger and the crack generates, so the inspection method for finger section is necessary. For the inspection of root finger, inspection points were decided by simulating ultra-sonic path with 3D modeling, curve-shape probe and fixing jig were invented, and the characteristics analysis method of ultrasonic reflection signal and defect signal disposition method were invented. This invented method was actually executed at site and prevented the blade liberation failure by detecting the cracks at the fingers. Also, the same type blades of the other turbines were inspected periodically and the reliability of the turbine increased.

준 3차원 유동해석을 통한 증기 터빈의 회전익 설계 (Steam Turbine Rotating Blade Design Using Quasi-3 dimensional Flow Analysis)

  • 조상현;김영상;권기범;임홍식
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.303-308
    • /
    • 2001
  • A rotating blade of steam turbines is designed using blade design system. To minimize the design time. quasi three dimensional flow analysis code is adopted to calculate blade section. The blade section lies on a streamline determined by previous steam turbine design procedures. The blade design system makes a transform of streamline coordinates, (m, r$\theta$), to (m', $\theta$) coordinates and all design procedure except 3 dimensional stack-up is performed in the coordinates. Each designed blade section is stacked-up and whole 3 dimensional blade can be modified by correcting 2D section, repeatly. The full 3D numerial analysis for the one stage including designed rotating blade will be performed later

  • PDF

저압터빈 최종단 블레이드 손상해석 (Damage Analysis for Last-Stage Blade of Low-Pressure Turbine)

  • 송기욱;최우성;김완재;정남근
    • 대한기계학회논문집B
    • /
    • 제37권12호
    • /
    • pp.1153-1157
    • /
    • 2013
  • 증기터빈의 터빈 블레이드는 발전소 핵심설비 중 하나로, 로터의 디스크에 결합되어 회전함으로 써 증기 에너지를 기계적 에너지로 변환시켜주는 역할을 하고 있다. 최근 터빈의 잦은 기동정지로 인해 블레이드 회전에 따른 원심하중이 반복적 작용하고 이에 따른 저압 증기터빈 최종단 블레이드의 손상이 자주 보고되고 있다. 본 논문에서는 터빈 블레이드에 발생되는 손상을 분석하여 블레이드에 발생되는 저주기 피로수명을 평가하였다. 증기터빈 최종단 블레이드의 균열발생 수명을 결정하기 위해 유한요소법으로 계산한 탄성응력에 Neuber's rule을 적용하여 진변형율 진폭을 계산하였으며, 예측된 수명과 블레이드 실제 기동정지횟수가 잘 일치됨을 보였다.

노즐 통과 증기에 의한 블레이드에 작용하는 힘 특성 (Characteristics of Blade Force by Nozzle Passing Steam)

  • 이병학;박종호
    • 한국소음진동공학회논문집
    • /
    • 제23권10호
    • /
    • pp.895-901
    • /
    • 2013
  • Last blades of LP turbine in nuclear power plant are the highly damaged part and suffered from nozzle steam impulses during the turbine operation. Nozzle impulse is known as a common cause of damage or failure in the turbine blade and results from steam flow distortions due to uneven steam flow patterns between the stationary blade vanes. If impulse force was continuously acting on the blade for a long time, crack or wear will occur in weak parts such as root. So, it is important to know variation of nozzle impulse during the blade moving. But there is no way to measure and estimate the magnitude and direction of nozzle impulse. Therefore, this study was performed to know the variation of nozzle impulse force according to the positions of the blade and to obtain blade equivalent force and torque. This results can be used for blade stress estimation.

증기터빈 블레이드의 파손방지를 위한 동특성 해석 (Dynamics Analysis for Preventing Failures of Steam Turbine Blade)

  • 김효진;박정용
    • 한국유체기계학회 논문집
    • /
    • 제1권1호
    • /
    • pp.17-23
    • /
    • 1998
  • The blade failures are identified as the leading cause of unplanned outages for steam turbine. Most investigations of the failures are limited to material tests, chemical analysis of deposits, and possibly examination of material specimens. But to correct a blading problem requires more than positive identification of the mechanisms involved. An analytic procedure capable of predicting stress and dynamic characteristics of turbine blades is presented to increase steam turbine availability by decreasing blade failures. Finite element method is used to model and predict natural frequencies, steady and dynamic stresses of turbine blades. The procedure is illustrated by the case study. This procedure is used to guide, and support the plant manager's decision to avoid a costly, unplanned outage

  • PDF

그래픽 환경을 이용한 상호 대화 방식의 증기 터빈 회전익 설계 패키지 개발 (Development of steam trubine rotor blade design package using GUI (graphic user interface))

  • 임형근;박구하;나운학;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.94-101
    • /
    • 2002
  • The steam turbine rotor blade is designed using the Turbine Rotor Design Package developed by the authors. It can quickly accomplish blade shape design in the power plant industry. The quasi-3d code is employed for analysis of passage flow in the blade sections. Iterative change of each blade shape is made by moving position of control points in the Bezier curve under GUI(graphic user interface) environment. The full 3-D blade shape is obtained by stacking of the section blades.

  • PDF

점 데이터를 이용한 블레이드 곡면 모델링 시스템 개발 (Development of Blade Surface Modeling System Using Point Data)

  • 김영일
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.110-115
    • /
    • 2019
  • Stationary and rotating blades can be found in a steam turbine generator and the airfoil shapes of these blades can be defined by point data from an aerodynamic design system. The main design process of blades is composed of two steps: first, the blade surface is modeled with the point data; and then, the section data is generated which contains composite curves with line segments and arcs for CAE of the blade. The surface is modeled by a curve-net defined by the point data, which may be extended to obtain the section data to model the blade. This paper presents methods for automating the above-mentioned steps, which have been implemented in the commercial CAD/CAM system, Unigraphics, with API functions written in C-language. Finally, the proposed methods have been applied to model the blade of a steam turbine generator.