• Title/Summary/Keyword: Steady-state pressure

Search Result 558, Processing Time 0.027 seconds

Behavior of failure of agricultural reservoir embankment due to overtopping (월류에 의한 저수지 제체의 붕괴 거동)

  • Lee, Dal-Won;Noh, Jae-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.427-439
    • /
    • 2012
  • In this study, an experiment with large-scale model was performed according to raising embankment in order to investigate the behaviour of failure due to overtopping. The pore water pressure, earth pressure and settlement by high water level, a rapid drawdown and overtopping were compared and analyzed. Also, seepage analysis and slope stability analysis were performed for steady state and transient conditions. The pore water pressure and earth pressure for inclined core type showed high value at the base of the core, but they showed no infiltration by leakage. The pore water pressure and earth pressure by overtopping increased at the upstream slope and core, it is considered a useful data that can accurately estimate the possibility of failure of the reservoir. The behavior of failure due to overtopping was gradually enlarged towards the downstream slope from reservoir crest, and the inclined core after the raising embankment was influenced significantly to prevent the reservoir failure. The pore water pressure distribution for steady state and transient condition showed positive (+) pore water pressure on the upstream slope, it was gradually changed negative (-) pore water pressure on the downstream slope. The pore water pressure by overtopping showed a larger than the high water level at the downstream slope, it was likely to be the piping phenomenon because the hydraulic gradients showed largely at the inclined core and reservoir crest. The safety factor showed high at the steady state, and transient conditions did not show differences depending on the rapid drawdown.

The steady and unsteady state computations on the flame structure for a Kerosene coaxial swirl injector (케로신 동축 와류형 분사기의 정상 및 비정상 상태 화염구조 해석)

  • Han, Sang-Hoon;Kim, Seong-Ku;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.31-34
    • /
    • 2012
  • Numerical simulations of the steady and unsteady state were conducted for a coaxial swirl injector with Kerosene fuel. Non-premixed equilibrium model based on chemical equilibrium assumption was used as turbulence-chemistry interaction model. As an equations of state, SRK(Soave-Redlich-Kwong) EOS was applied to deal with the behavior of real fluid in a high pressure condition. Through the steady and unsteady computations, mean values of steady and time-averaged unsteady state were compared on the temperature and OH mass fraction and it was shown that the flame structure of steady state was different to that of time-averaged unsteady state.

  • PDF

Low Level Control of Metal Belt CVT Considering Shift Dynamics and Ratio Valve On-Off Characteristics

  • Kim, Tal-Chol;Kim, Hyun-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.645-654
    • /
    • 2000
  • In this paper, low level control algorithms of a metal belt CVT are suggested. A feedforward PID control algorithm is adopted for line pressure based on a steady state relationship between the input duty and the line pressure. Experimental results show that feedforward PID control of the line pressure guarantees a fast response while reducing the pressure undershoot which may result in belt slip. For ratio control, a fuzzy logic is suggested by considering the CVT shift dynamics and on-off characteristics of the ratio control valve. It is found from experimental results that a desired speed ratio can be achieved at steady state in spite of the fluctuating primary pressure. It is expected that the low level control algorithms for the line pressure and speed ratio suggested in this study can be implemented in a prototype CVT.

  • PDF

Spray Characteristics of Simplex Swirl Injector with Low Hydrodynamic Disturbance Generated by Pressure Fluctuation in Feed Line (축방향 압력섭동에 의해 발생되는 저주파 수력학적 교란이 단일 스월 인젝터에 미치는 영향 분석)

  • Khil, Tae-Ock;Kim, Sung-Hyuk;Kim, Hyeon-Sung;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The low frequency combustion instability phenomena generated by pressure drop oscillation such as propellant shake in feed line are studied. To generate the flowrate oscillation by the pressure pulsation up to 400Hz without flow discontinuities and cavitations, a hydrodynamic mechanical pulsator of rotating disk type was produced. Injection pressure conditions are 5, 7 and 9 bar and pressure fluctuation frequency conditions are 0, 4, 6 and 8 Hz. When the injection pressure was oscillated by a mechanical pulsator, the spray shape was pulsated regularly. During the pulsated state of the spray with a mechanical pulsator, the spray characteristics, such as spray angle and liquid film thickness in orifice exit, were measured and compared with those in steady state without a mechanical pulsator. Though the mean injection pressure was fixed in the steady and fluctuating state, there were some differences in all measured values, i.e. liquid film thickness and spray cone angle, between both states.

  • PDF

Nonlinear Acoustic-Pressure Responses of H2/Air Counterflow Diffusion Flames (수소/공기 대향류 확산화염의 비선형 음향파 응답특성에 관한 연구)

  • Kim, Hong-Jip;Chung, Suk-Ho;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1158-1164
    • /
    • 2003
  • Steady-state structure and acoustic-pressure responses of $H_2$/Air counterflow diffusion flames are studied numerically with a detailed chemistry in view of acoustic instability. The Rayleigh criterion is adopted to judge acoustic amplification or attenuation from flame responses. Steady-state flame structures are first investigated and flame responses to various acoustic-pressure oscillations are numerically calculated in near-equilibrium and near-extinction regimes. The acoustic responses of $H_2$/Air flame show that the responses in near-extinction regime always contribute to acoustic amplification regardless of acoustic-oscillation frequency Flames near extinction condition are sensitive to pressure perturbation and thereby peculiar nonlinear responses occur, which could be a possible mechanism in generating the threshold phenomena observed in combustion chamber of propulsion systems.

Evaluation of the Turbulence Models on the Aerodynamic Performance of Three-Dimensional Small-Size Axial Fan (3차원 소형축류홴의 공력특성에 대한 난류모델평가)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.13-20
    • /
    • 2014
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate turbulent models on the aerodynamic performance of a small-size axial fan(SSAF). The prediction performance on the static pressure of all turbulent models is going downhill at the high static pressure and low flowrate region, but has improved at the axial flow region. In consequence, all turbulent models predict the static pressure coefficient with an error performance less than about 4% after the region of the flowrate coefficient of about 0.14. Especially, the turbulent model of SST $k-{\omega}$ shows the best prediction performance equivalent to an error performance less than about 2% on the static pressure.

Observation of Moisture Content in Wood at Non-Steady State

  • Hwang, Sung-Wook;Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.6
    • /
    • pp.599-604
    • /
    • 2009
  • For the search of unified law of moisture movement in wood, moisture distribution of Korean red pine at non-steady state was investigated. We assume that the equilibrium moisture content (EMC) in wood depends on only temperature and relative humidity, it can be control in temperature and humidity chamber. If temperature is constant and humidity or vapor pressure is changed with sin curve shape at adequate cycles, EMC in chamber can be changed as well with sin-curve shape. The setup condition of a non-steady state in humidity control chambers is a constant temperature at $20^{\circ}C$ and 15+10 sin ${\omega}t$ percent EMC. It can be found that the distribution of moisture in the specimen with varying relative humidity are illustrated various types. Moisture in wood is complicated and vibrates with the moisture sorption process. Considering a unified law of moisture movement in wood, it is considered that the most important fact is to search the method of precise diffusion & transfer coefficients.

  • PDF

Safety evaluation of agricultural reservoir embankment according to backside extension (후면 덧쌓기에 따른 농업용 저수지 제체의 안정성 평가)

  • Lee, Dal-Won;Noh, Jae-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.97-110
    • /
    • 2012
  • This study was carried out for safety evaluation, the practical application and improvement of design method of the agricultural reservoir embankment according to backside extension. Seepage analysis, slope stability analysis and finite element analysis were performed for steady state and transient conditions. Also, the pore water pressure, seepage quantity, safety factor and stress-strain behavior according to high water level and rapid drawdown were compared and analyzed. The pore water pressure at contact region between backside extension and old embankment was kept high after rapid drawdown. Therefore, backside extension is recommended that design method is required to be improved and reinforced more than the others raising embankment. The hydraulic gradients before and after backside extension showed high value at the base of the core, but they showed stable state at the upstream slope and downstream slope. The seepage quantity per 1 day and the leakage per 100 m for the steady state and transient conditions appeared to be safe against the piping. The safety factor of slope stability showed high at the steady state, and transient conditions did not show differences depending on the rapid drawdown. The safety factor was appeared high at the upstream slope before backside extension and downstream slope after extension. The excess pore water pressure for steady state and transient conditions showed negative(-) at the upstream slope, it was small at the downstream slope. The mean effective stress (p') showed high at the base of the core and to be wild distribution after the extension. The displacement after extension showed 0.02-0.06 m in the upstream slope, the maximum shear strain after extension was smaller than that before extension.

Non-Steady Elastohydrodynamic Lubrication Analysis on the Cam-Roller of Valve Mechanism for a Marine Diesel Engine (박용디젤기관 밸브기구용 캠-롤러 사이의 비정상상태 탄성유체윤활해석)

  • 구영필;강민호;이득우;조용주
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.201-207
    • /
    • 2000
  • The numerical procedure to analyze a non-steady 3-dimensional elastohydrodynamic lubrication on the cyclically loaded contact has been newly developed. The procedure was applied on the cam-roller contact of the valve mechanism for the marine diesel engine. Both the pressure distribution and the film thickness between the cam and roller follower were calculated for each time step of the whole cycle. The pressure spike is shown at the outlet of the roller edge and it is getting higher as the external load is increased. The film thicknesses in the result of the non-steady analysis have a tendency to increase compared to those in the result of the analysis with the assumption of steady state. Therefore, the surface roughness of the non-steady contact need not be limited below that of the steady contact of the equivalent operating conditions.

Heat Transfer Characteristics of an Internally-Heated Annulus Cooled with R-134a Near the Critical Pressure

  • Hong, Sung-Deok;Chun, Se-Young;Kim, Se-Yun;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • An experimental study of heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) tests, and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with increase of the system pressure for fixed inlet mass flux and subcooling. The CHF falls sharply at about 3.8 MPa and shows a trend towards converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall, because the CHF occurs at remarkably low power levels. In the pressure reduction transients, as soon as the pressure passes below the critical pressure from the supercritical pressure, the wall temperatures rise rapidly up to very high values due to the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, and then tends to decrease gradually.