• Title/Summary/Keyword: Steady-state integral proportional integral control

Search Result 59, Processing Time 0.035 seconds

Determination of PID Coefficients for the Ascending and Descending System Using Proportional Valve of a Rice Transplanter

  • Siddique, Md. Abu Ayub;Kim, Wan-Soo;Baek, Seung-Yun;Kim, Yeon-Soo;Choi, Chang-Hyun;Kim, Yong-Joo;Park, Jin-Kam
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.331-341
    • /
    • 2018
  • Purpose: This study was conducted to develop a linear Proportional-Integral-Derivative (PID) control algorithm for the ascending and descending system of a rice transplanter and to analyze its response characteristics. Methods: A hydraulic model using a single-acting actuator, proportional valve and a PID control algorithm were developed for the ascending and descending system. The PID coefficients are tuned using the Ziegler-Nichols (Z-N) method and the characteristics of unit step response are analyzed to select the PID coefficients at various pump speeds. Results: Results showed that the performance of the PID controller was superior in any condition. It was found that the highest settling time and maximum overshoot were less than 0.210 s and 5%, respectively at all pump speed. It was determined that the steady state errors were 0% in all the cases. The lowest overshoot and settling time were calculated to be nearly 2.56% and 0.205 s, respectively at the pump rated speed (2650 rpm). Conclusions: The results indicated that the developed PID control algorithm would be feasible for the ascending and descending system of a rice transplanter. Finally, it would be helpful to plant the seedlings uniformly and improve the performance of the rice transplanter.

Stationary Frame Current Control Evaluations for Three-Phase Grid-Connected Inverters with PVR-based Active Damped LCL Filters

  • Han, Yang;Shen, Pan;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.297-309
    • /
    • 2016
  • Grid-connected inverters (GCIs) with an LCL output filter have the ability of attenuating high-frequency (HF) switching ripples. However, by using only grid-current control, the system is prone to resonances if it is not properly damped, and the current distortion is amplified significantly under highly distorted grid conditions. This paper proposes a synchronous reference frame equivalent proportional-integral (SRF-EPI) controller in the αβ stationary frame using the parallel virtual resistance-based active damping (PVR-AD) strategy for grid-interfaced distributed generation (DG) systems to suppress LCL resonance. Although both a proportional-resonant (PR) controller in the αβ stationary frame and a PI controller in the dq synchronous frame achieve zero steady-state error, the amplitude- and phase-frequency characteristics differ greatly from each other except for the reference tracking at the fundamental frequency. Therefore, an accurate SRF-EPI controller in the αβ stationary frame is established to achieve precise tracking accuracy. Moreover, the robustness, the harmonic rejection capability, and the influence of the control delay are investigated by the Nyquist stability criterion when the PVR-based AD method is adopted. Furthermore, grid voltage feed-forward and multiple PR controllers are integrated into the current loop to mitigate the current distortion introduced by the grid background distortion. In addition, the parameters design guidelines are presented to show the effectiveness of the proposed strategy. Finally, simulation and experimental results are provided to validate the feasibility of the proposed control approach.

Robust PID $\times$ (n-1) Stage PD Controller

  • Numsomran, Arjin;Julsereewong, Prasit;Ukakimaparn, Prapart;Trisuwannawat, Thanit;Tirasesth, Kitti
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.298-301
    • /
    • 1999
  • This paper presents a design technique based on the root locus method fur a class of $n^{th}$ order plants using PID (Proportional-Integral-Derivative) x (n-1) stage PD controller. It is intended to satisfy both transient and steady state response specifications. This controller can be used instead of a conventional PID controller for the higher order plants to obtain better performances. The controlled system is approximated as a stable and robust second order controlled system. Only adjusting the controller gain, the desired performances of the controlled system are satisfied. For the stable plant including the plant with small dead time, the controlled system is made robustly stable. In case of the unstable plant, when the controller gain is adjusted higher than the critical value, the unstable plant can also be made stable. Robustness properties given by this controller proposed in this paper have also been demonstrated by numerical examples.

  • PDF

A Novel Photovoltaic Power Harvesting System Using a Transformerless H6 Single-Phase Inverter with Improved Grid Current Quality

  • Radhika, A.;Shunmugalatha, A.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.654-665
    • /
    • 2016
  • The pumping of electric power from photovoltaic (PV) farms is normally carried out using transformers, which require heavy mounting structures and are thus costly, less efficient, and bulky. Therefore, transformerless schemes are developed for the injection of power into the grid. Compared with the H4 inverter topology, the H6 topology is a better choice for pumping PV power into the grid because of the reduced common mode current. This paper presents how the perturb and observe (P&O) algorithm for maximum power point tracking (MPPT) can be implemented in the H6 inverter topology along with the improved sinusoidal current injected to the grid at unity power factor with the average current mode control technique. On the basis of the P&O MPPT algorithm, a power reference for the present insolation level is first calculated. Maintaining this power reference and referring to the AC sine wave of bus bars, a sinusoidal current at unity power factor is injected to the grid. The proportional integral (PI) controller and fuzzy logic controller (FLC) are designed and implemented. The FLC outperforms the PI controller in terms of conversion efficiency and injected power quality. A simulation in the MATLAB/SIMULINK environment is carried out. An experimental prototype is built to validate the proposed idea. The dynamic and steady-state performances of the FLC controller are found to be better than those of the PI controller. The results are presented in this paper.

Process Control and Dynamic Optimization of Bio-based 2,3-butanediol Distillation Column (바이오 기반 2,3-butanediol 증류 공정의 제어 및 동적 최적화)

  • Giyeol Lee;Nahyeon An;Jongkoo Lim;Insu Han;Hyungtae Cho;Junghwan Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.217-225
    • /
    • 2023
  • 2,3-Butanediol (2,3-BDO), which is used in various fields such as cosmetics and fertilizers, is a high value-added substance and the demand for it is gradually increasing. 2,3-BDO produced from the fermentation of microorganisms not only contains by-products of fermentation, but also varies greatly in feed composition depending on fermentation conditions, so it is difficult to efficiently operate the separation process to reach the target purity of the product. Therefore, in this study, through dynamic optimization of the bio-based 2,3-BDO distillation process, the optimal control route was explored to control the 2,3-BDO concentration of the bottom product to 99 wt% or more, when feed concentration changes. Steady and dynamic state process simulation, proportional integral (PI) controller design, and dynamic optimization were sequentially performed. As a result, the error between the 2,3-BDO concentration and the set point of the bottom product was reduced by 75.2%.

PR Controller Based Current Control Scheme for Single-Phase Inter-Connected PV Inverter (PR제어기를 이용한 단상 계통 연계형 태양광 인버터 설계)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3587-3593
    • /
    • 2009
  • Nowadays, the PV systems have been focused on the interconnection between the power source and the grid. The PV inverter, either single-phase or three-phase, can be considered as the core of the whole system because of an important role in the grid-interconnecting operation. An important issue in the inverter control is the load current regulation. In the literature, the Proportional+Integral (PI) controller, normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an ac system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. By comparison with the PI controller, the Proportional+Resonant (PR) controller can introduce an infinite gain at the fundamental ac frequency; hence can achieve the zero steady-state error without requiring the complex transformation and the dq-coupling technique. In this paper, a PR controller is designed and adopted for replacing the PI controller. Based on the theoretical analyses, the PR controller based control strategy is implemented in a 32-bit fixed-point TMS320F2812 DSP and evaluated in a 3kW experimental prototype Photovoltaic (PV) power conditioning system (PCS). Simulation and experimental results are shown to verify the performance of implemented control scheme in PV PCS.

Development of a self-leveling system for the bucket of an agricultural front-end loader using an electro hydraulic proportional valve and a tilt sensor (전자유압 비례밸브와 경사센서를 이용한 농용 프론트 로더 버켓 능동수평유지 시스템 개발)

  • Lee, Chang Joo;Ha, Jong Woo;Choi, Deok Su;Kim, Hak Jin
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.60-70
    • /
    • 2015
  • A front-end loader (FEL) mounted on an agricultural tractor is one of the most commonly used implements for farm work. However, when the tractor carries material using the bucket attached to the FEL on a sloping ground, the materials can spill or roll back over the operator due to the tilted body, thereby requiring the bucket surface to remain level at a constant value regardless of varying slopes. In this study, an active system for controlling the angle of the FEL bucket on a tractor based on the real-time measurement of ground slopes was developed to enable the bucket to constantly remain level. A FEL simulator operated based on an electro hydraulic proportional valve (EHPV) was constructed in the laboratory to develop a proportional-integral-derivative (PID) controller forming a virtual electronic control unit (ECU) on the computer, which could automatically adjust the bucket angles depending on varying input angles while sending SAE-J1939 associated messages via CAN BUS to the EHPV. The different parameter values for the PID controller due to the gravity effect of the bucket were determined using a manual PID tuning method while assuming that the tractor travels on either an ascending slope or a descending slope. The developed PID control-based self-leveling system showed a mean of steady-state errors of within $1^{\circ}$ and a mean of delayed times of ~ 0.8s when the step input of $+20^{\circ}$ was given, implying that the developed system and control algorithm would be effective in maintaining the bucket angle at a certain value. Future studies include the improvement of the control algorithm to reduce such a time delay as well as the application of the developed algorithm to the FEL mounted on a tractor tested at a testing ground.

Modeling and Intelligent Control for Activated Sludge Process (활성슬러지 공정을 위한 모델링과 지능제어의 적용)

  • Cheon, Seong-pyo;Kim, Bongchul;Kim, Sungshin;Kim, Chang-Won;Kim, Sanghyun;Woo, Hae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1905-1919
    • /
    • 2000
  • The main motivation of this research is to develop an intelligent control strategy for Activated Sludge Process (ASP). ASP is a complex and nonlinear dynamic system because of the characteristic of wastewater, the change in influent flow rate, weather conditions, and etc. The mathematical model of ASP also includes uncertainties which are ignored or not considered by process engineer or controller designer. The ASP is generally controlled by a PID controller that consists of fixed proportional, integral, and derivative gain values. The PID gains are adjusted by the expert who has much experience in the ASP. The ASP model based on $Matlab^{(R)}5.3/Simulink^{(R)}3.0$ is developed in this paper. The performance of the model is tested by IWA(International Water Association) and COST(European Cooperation in the field of Scientific and Technical Research) data that include steady-state results during 14 days. The advantage of the developed model is that the user can easily modify or change the controller by the help of the graphical user interface. The ASP model as a typical nonlinear system can be used to simulate and test the proposed controller for an educational purpose. Various control methods are applied to the ASP model and the control results are compared to apply the proposed intelligent control strategy to a real ASP. Three control methods are designed and tested: conventional PID controller, fuzzy logic control approach to modify setpoints, and fuzzy-PID control method. The proposed setpoints changer based on the fuzzy logic shows a better performance and robustness under disturbances. The objective function can be defined and included in the proposed control strategy to improve the effluent water quality and to reduce the operating cost in a real ASP.

  • PDF

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.