• 제목/요약/키워드: Steady-state free precession

검색결과 16건 처리시간 0.028초

SSFPI 기법을 이용한 MR 뇌기능 영상 -고 속의 자화율 효과의 직접적인 측정 (SSFP Interferometry (SSFPI) Technique Applied to functional MRI - A Fast and Direct Measurement of Magnetic Susceptibility Effect)

  • 정준영
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권4호
    • /
    • pp.525-534
    • /
    • 1996
  • We have developed a fast steady state free precession interferometry (SSFPI) technique which is useful for the fMRl (functional Magnetic Resonance Imaging). As is known, SSFP sequence with a suitable adjustment of Vadient (readeut) allows us to measure precession angle 6 which in tw relates to the field inhomogeneity. Combining the two pulses (known as FID and Echo) in FADE (Fast Acquisition Double Echo) sequence, for example, one can obtain the interference term which is directly related to the precession angle It has been known that a fast high resolution magnetic field mapping is possible by use of the modified FADE sequence or SSFPI, and we have attempted to use the SSFPI technique for the susceptibility-induced fMRl. When the method is applied to the susceptibility effect based functional magnetic resonance imaging (fMRl), it was found that the direct susceptibility effect measurement was possible without perturbations such as the backgrounds and inflow effect. In this paper, simulation results and experimental results obtained with 2.0 Tesla MRI system are presented.

  • PDF

Diagnostic Performance of Diffusion-Weighted Steady-State Free Precession in Differential Diagnosis of Neoplastic and Benign Osteoporotic Vertebral Compression Fractures: Comparison to Diffusion-Weighted Echo-Planar Imaging

  • Shin, Jae Ho;Jeong, Soh Yong;Lim, Jung Hyun;Park, Jeongmi
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권3호
    • /
    • pp.154-161
    • /
    • 2017
  • Purpose: To evaluate the diagnostic performance of diffusion-weighted steady-state free precession (DW-SSFP) in comparison to diffusion-weighted echo-planar imaging (DW-EPI) for differentiating the neoplastic and benign osteoporotic vertebral compression fractures. Materials and Methods: The subjects were 40 patients with recent vertebral compression fractures but no history of vertebroplasty, spine operation, or chemotherapy. They had received 3-Tesla (T) spine magnetic resonance imaging (MRI), including both DW-SSFP and DW-EPI sequences. The 40 patients included 20 with neoplastic vertebral fracture and 20 with benign osteoporotic vertebral fracture. In each fracture lesion, we obtained the signal intensity normalized by the signal intensity of normal bone marrow (SI norm) on DW-SSFP and the apparent diffusion coefficient (ADC) on DW-EPI. The correlation between the SI norm and the ADC in each lesion was analyzed using linear regression. The optimal cut-off values for the diagnosis of neoplastic fracture were determined in each sequence using Youden's J statistics and receiver operating characteristic curve analyses. Results: In the neoplastic fracture, the median SI norm on DW-SSFP was higher and the median ADC on DW-EPI was lower than the benign osteoporotic fracture (5.24 vs. 1.30, P = 0.032, and 0.86 vs. 1.48, P = 0.041, respectively). Inverse linear correlations were evident between SI norm and ADC in both neoplastic and benign osteoporotic fractures (r = -0.45 and -0.61, respectively). The optimal cut-off values for diagnosis of neoplastic fracture were SI norm of 3.0 in DW-SSFP with the sensitivity and specificity of 90.4% (95% confidence interval [CI]: 81.0-99.0) and 95.3% (95% CI: 90.0-100.0), respectively, and ADC of 1.3 in DW-EPI with the sensitivity and specificity of 90.5% (95% CI: 80.0-100.0) and 70.4% (95% CI: 60.0-80.0), respectively. Conclusion: In 3-T MRI, DW-SSFP has comparable sensitivity and specificity to DW-EPI in differentiating the neoplastic vertebral fracture from the benign osteoporotic vertebral fracture.

핵자기 뇌기능 영상에서 SSFPI 기법을 이용한 자화율효과의 관찰 (Observation of Susceptibility Change in fMRI Using SSFP Interferometry (SSFPI) Technique)

  • 정준영;정순철;노용만;조장희
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 추계학술대회
    • /
    • pp.173-176
    • /
    • 1995
  • We have developed a fast steady state free precession interferometry (SSFPI) technique which is useful for the fMRI (functional Magnetic Resonance Imaging). As is known, SSFP sequence with a suitable adjustment of gradient (readout) allows us to measure precession angle $\theta$ which is in turn related to the field inhomogeneity [1-3]. When the method is applied to the susceptibility effect based functional magnetic resonance imaging (fMRI), it was found that the direct susceptibility effect measurement was possible without perturbations such as the backgrounds and inflow effect. In this paper, simulation results and experimental results obtained with 2.0 Tesla MRI system are also presented.

  • PDF

Flow Restored SSFP Sequence in NMR Imaging

  • 정관진;안우연;나종범;조장희
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1990년도 춘계학술대회
    • /
    • pp.25-27
    • /
    • 1990
  • By designing the gradient pulses to be velocity compensated during one pulse cycle in SSFP (steady state free precession) imaging, the flowing spins can be maintained in the steady state. In the new SSFP sequence the flow signal which might be lost in conventional SSFP imaging sequences can be restored owing to the signal contribution from the preceding pulse cycles. By using the proposed SSFP sequence substantial restoration of the flow signal has been observed for the CSF (cerebro spinal fluid) of the human head.

  • PDF

체적 지향형 호흡정지 자기공명 조영술의 가속화에 대한 32채널 코일 어레이의 효용성 (Effectiveness of 32-element Surface Coil Array for Accelerated Volume-Targeted Breath-Hold Coronary MRA)

  • 이현열;서진석;박재석
    • Investigative Magnetic Resonance Imaging
    • /
    • 제13권2호
    • /
    • pp.137-145
    • /
    • 2009
  • 목적: 각각 12개와 32개 요소 표면 코일 어레이를 사용한 가속율이 매우 큰 관상동맥 자기 공명 혈관조영술을 병렬 영상 기법에 적용하고 결과를 비교한다. 방법: 5명의 건강한 지원자에 대하여 1.5T 전신 자기공명영상장치에서 각각 12개와 32개 요소 표면 코일 어레이를 사용한 steady state free precession 자기공명 혈관조영술이 수행되었다. 각 지원자의 좌전하방관상동맥과 우관상동맥을 영상하여 데이터를 얻었다. 데이터는 병렬 영상을 위하여 1에서 6에 이르는 감소율로 부분 추출되었다. 양 코일 어레이 각각에 대하여 지형 인자의 평균, 극대, 그리고 인공물정도가 계산되었다. 결과: 모든 감소율에 있어서, 32개 요소 어레이가 12개 요소 어레이에 비하여 지형인자의 평균과 극대, 그리고 인공물정도가 상당히 줄어들었다 (P << 0.1). 지형인자의 평균은 관상동맥의 영상 방향에 민감한 반면, 지형인자 극대치와 인공물정도는 영상 방향에 독립적이었다. 결론: 가속율이 매우 큰 관상동맥 자기공명 혈관조영술의 병렬 영상 적용에 있어 32개 요소 표면 코일 어레이를 사용함은 인공물과 잡음을 상당히 억제시킨다. 32개 요소 표면 코일 어레이를 사용하여 가속율을 증가시키는 것은 공간 해상도를 향상시키거나 3D관상동맥 자기공명 혈관조영술에 있어서 체적 범위를 증가시킬 수 있는 가능성을 제공한다.

  • PDF

여러 간외담도 질환에서 삼차원적 자기공명 췌담관 조영술과 내시경적 역행성 췌담관 조영술과의 비교: 진단적 정확성을 중심으로 (Comparison of Diagnostic Accuracy of Three-Dimensional MR Cholangiopanceatography and ERCP in Various Extrahepatic Biliary Lesions)

  • 김경숙;이문규;김명환;이승규;김표년;오용호
    • Investigative Magnetic Resonance Imaging
    • /
    • 제1권1호
    • /
    • pp.148-153
    • /
    • 1997
  • 목적: 다양한 간외담도질환에서 3차원적 자기공명췌담도조영술(MR cholangiopancreatography, MRCP)의 진단적 가치를 내시경적 역생성 췌담도조영술(ENDOSCOPIC RETROGRADE CHOLANGIOPANCREATOGRAPHY, ERCP)와 비교하여 알아보고자 하였다. 대상 및 방법: 간외담도질환이 의심되는 46명의 환자에 대하여 MRCP와 ERCP를 각각 시행하였다. MRCP는 reverse fast imaging with a steady-state free precession(reverse FISP:PSIF) 기법을 이용하여 얻어낸 후 MIP algorithm을 이용하여 재구성하였다. 담도확장여부와 폐쇄부위 진단에 대한 MRCP의 정확성을 ERCP를 최적기준으로 하여 평가하였다. 또한 악성 및 양성병변의 감별과 종합적인 진단정확도를 MRCP와 ERCP간에 비교하였다. 결과: MRCP의 담도확장여부 예측은 민감도 94.6%, 특이도 75.0%, 정확도 91.1%였다. 폐쇄부위 예측의 정확도는 87.0%였다. 악성과 양성병변의 감별에 있어 MRCP와 ERCP의 민감도, 특이도, 정확도는 각각 76.2%, 87.5%, 82.2%와 71.4%, 83.3%, 77.8%였다. 각각의 지롼에 대한 전체적 진단의 정확도는 MRCP가 60.0%, ERCP가 55.6%였다. 결론: 3D MRCP는 간외담도질환에 있어 ERCP와 비교하여 손색없는 진단적 가치를 가지며, 앞으로 ERCP를 대체할 수 있는 좋은 검사방법이라고 생각된다.

  • PDF

Feasibility of Three-Dimensional Balanced Steady-State Free Precession Cine Magnetic Resonance Imaging Combined with an Image Denoising Technique to Evaluate Cardiac Function in Children with Repaired Tetralogy of Fallot

  • YaFeng Peng;XinYu Su;LiWei Hu;Qian Wang;RongZhen Ouyang;AiMin Sun;Chen Guo;XiaoFen Yao;Yong Zhang;LiJia Wang;YuMin Zhong
    • Korean Journal of Radiology
    • /
    • 제22권9호
    • /
    • pp.1525-1536
    • /
    • 2021
  • Objective: To investigate the feasibility of cine three-dimensional (3D) balanced steady-state free precession (b-SSFP) imaging combined with a non-local means (NLM) algorithm for image denoising in evaluating cardiac function in children with repaired tetralogy of Fallot (rTOF). Materials and Methods: Thirty-five patients with rTOF (mean age, 12 years; range, 7-18 years) were enrolled to undergo cardiac cine image acquisition, including two-dimensional (2D) b-SSFP, 3D b-SSFP, and 3D b-SSFP combined with NLM. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) of the two ventricles were measured and indexed by body surface index. Acquisition time and image quality were recorded and compared among the three imaging sequences. Results: 3D b-SSFP with denoising vs. 2D b-SSFP had high correlation coefficients for EDV, ESV, SV, and EF of the left (0.959-0.991; p < 0.001) as well as right (0.755-0.965; p < 0.001) ventricular metrics. The image acquisition time ± standard deviation (SD) was 25.1 ± 2.4 seconds for 3D b-SSFP compared with 277.6 ± 0.7 seconds for 2D b-SSFP, indicating a significantly shorter time with the 3D than the 2D sequence (p < 0.001). Image quality score was better with 3D b-SSFP combined with denoising than with 3D b-SSFP (mean ± SD, 3.8 ± 0.6 vs. 3.5 ± 0.6; p = 0.005). Signal-to-noise ratios for blood and myocardium as well as contrast between blood and myocardium were higher for 3D b-SSFP combined with denoising than for 3D b-SSFP (p < 0.05 for all but septal myocardium). Conclusion: The 3D b-SSFP sequence can significantly reduce acquisition time compared to the 2D b-SSFP sequence for cine imaging in the evaluation of ventricular function in children with rTOF, and its quality can be further improved by combining it with an NLM denoising method.

Performance Evaluation of a Rapid Three Dimensional Diffusion MRI

  • Numano, Tomokazu;Homma, Kazuhiro;Nishimura, Katsuyuki
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.356-358
    • /
    • 2002
  • MRI, particularly diffusion weighted imaging (DWI), plays vital roles in detection of the acute brain infarction$\^$1-4/ and others metabolic changes of biological tissues. In general, every molecule in biological tissues may diffuse and move randomly in three-dimensional space. However, in clinical diagnosis, only 2D-DWI is used. The authors have developed a new method for rapid three-dimensional DWI (3D-DWI). In this method, by refocusing of the magnetized spin with the applied gradient field, direction of which is opposite to phase encoding field. Magnetized spin of $^1$H is kept under the SSFP (steady state free precession)$\^$5-6/. Under SSFP, in addition of FID, spin echo and stimulated echo are also generated, so the acquired signal is increased. The signal intensity is increased depending on flip angle (FA) of magnetized spin. This phenomenon is confirmed by human brain and phantom studies. The performance of this method is quantitatively analyzed by using both of conventional spin echo DWI and 3D-DWI. From experimental results, three dimensional diffusion weighted images are obtained correctly for liquid phantoms (water, acetone and oil), diffusion coefficient is enhanced in each image. Therefore, this method will provide useful information for clinical diagnosis.

  • PDF

Dynamic Cardiac Magnetic Resonance Fingerprinting During Vasoactive Breathing Maneuvers: First Results

  • Luuk H.G.A. Hopman;Elizabeth Hillier;Yuchi Liu;Jesse Hamilton;Kady Fischer;Nicole Seiberlich;Matthias G. Friedrich
    • Journal of Cardiovascular Imaging
    • /
    • 제31권2호
    • /
    • pp.71-82
    • /
    • 2023
  • BACKGROUND: Cardiac magnetic resonance fingerprinting (cMRF) enables simultaneous mapping of myocardial T1 and T2 with very short acquisition times. Breathing maneuvers have been utilized as a vasoactive stress test to dynamically characterize myocardial tissue in vivo. We tested the feasibility of sequential, rapid cMRF acquisitions during breathing maneuvers to quantify myocardial T1 and T2 changes. METHODS: We measured T1 and T2 values using conventional T1 and T2-mapping techniques (modified look locker inversion [MOLLI] and T2-prepared balanced-steady state free precession), and a 15 heartbeat (15-hb) and rapid 5-hb cMRF sequence in a phantom and in 9 healthy volunteers. The cMRF5-hb sequence was also used to dynamically assess T1 and T2 changes over the course of a vasoactive combined breathing maneuver. RESULTS: In healthy volunteers, the mean myocardial T1 of the different mapping methodologies were: MOLLI 1,224 ± 81 ms, cMRF15-hb 1,359 ± 97 ms, and cMRF5-hb 1,357 ± 76 ms. The mean myocardial T2 measured with the conventional mapping technique was 41.7 ± 6.7 ms, while for cMRF15-hb 29.6 ± 5.8 ms and cMRF5-hb 30.5 ± 5.8 ms. T2 was reduced with vasoconstriction (post-hyperventilation compared to a baseline resting state) (30.15 ± 1.53 ms vs. 27.99 ± 2.07 ms, p = 0.02), while T1 did not change with hyperventilation. During the vasodilatory breath-hold, no significant change of myocardial T1 and T2 was observed. CONCLUSIONS: cMRF5-hb enables simultaneous mapping of myocardial T1 and T2, and may be used to track dynamic changes of myocardial T1 and T2 during vasoactive combined breathing maneuvers.

Retrospective Electrocardiography-Gated Real-Time Cardiac Cine MRI at 3T: Comparison with Conventional Segmented Cine MRI

  • Chen Cui;Gang Yin;Minjie Lu;Xiuyu Chen;Sainan Cheng;Lu Li;Weipeng Yan;Yanyan Song;Sanjay Prasad;Yan Zhang;Shihua Zhao
    • Korean Journal of Radiology
    • /
    • 제20권1호
    • /
    • pp.114-125
    • /
    • 2019
  • Objective: Segmented cardiac cine magnetic resonance imaging (MRI) is the gold standard for cardiac ventricular volumetric assessment. In patients with difficulty in breath-holding or arrhythmia, this technique may generate images with inadequate quality for diagnosis. Real-time cardiac cine MRI has been developed to address this limitation. We aimed to assess the performance of retrospective electrocardiography-gated real-time cine MRI at 3T for left ventricular (LV) volume and mass measurement. Materials and Methods: Fifty-one patients were consecutively enrolled. A series of short-axis cine images covering the entire left ventricle using both segmented and real-time balanced steady-state free precession cardiac cine MRI were obtained. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and LV mass were measured. The agreement and correlation of the parameters were assessed. Additionally, image quality was evaluated using European CMR Registry (Euro-CMR) score and structure visibility rating. Results: In patients without difficulty in breath-holding or arrhythmia, no significant difference was found in Euro-CMR score between the two techniques (0.3 ± 0.7 vs. 0.3 ± 0.5, p > 0.05). Good agreements and correlations were found between the techniques for measuring EDV, ESV, EF, SV, and LV mass. In patients with difficulty in breath-holding or arrhythmia, segmented cine MRI had a significant higher Euro-CMR score (2.3 ± 1.2 vs. 0.4 ± 0.5, p < 0.001). Conclusion: Real-time cine MRI at 3T allowed the assessment of LV volume with high accuracy and showed a significantly better image quality compared to that of segmented cine MRI in patients with difficulty in breath-holding and arrhythmia.