• Title/Summary/Keyword: Steady-state analysis

Search Result 1,873, Processing Time 0.026 seconds

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Horizontal 2-D Finite Element Model for Analysis of Mixing Transport of Heat Pollutant (열오염 혼합 거동 해석을 위한 수평 2차원 유한요소모형)

  • Seo, Il Won;Choi, Hwang Jeong;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.507-514
    • /
    • 2011
  • A numerical model has been developed by employing a finite element method to simulate the depth-averaged 2-D dispersion of the heat pollutant, which is an important pollutant material in natural streams. Among the finite element methods, the Streamline Upwind/Petrov Galerkin (SUPG) method was applied. Also both linear and quadratic elements can be applied so that irregular river boundaries can be easily represented. To show the movement of heat pollutants, the reaction term describing heat transfer was represented as an equation in which sink/source term is proportional to the difference between the equilibrium temperature and water surface temperature. The equation was expressed so that the water surface temperature changes according to the temperature transfer coefficient and the equilibrium temperature. For the calibration of the model developed, analytic and numerical results from a case of rectangular channel with full width continuous injection have been compared in a steady state. The comparisons showed that the numerical results were in good agreement with analytical solutions. The application site was selected from the downstream of Paldang dam to Jamsil submerged weir, and overall length of this site is about 22.5 km. The change of water temperature caused by the discharge from the Guri sewage treatment plant has been simulated, and results were similar to the observed data. Overall it is concluded that the developed model can represent the water temperature changes due to heat transport accurately. But the verification using observed data will further enhance the validity of the model.

Computer Simulation for the Thermal Analysis of the Energy Storage Board (에너지 축열보드 열해석을 위한 컴퓨터 수치해석)

  • 강용혁;엄태인;곽희열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.224-232
    • /
    • 1999
  • Latent heat storage system using micro-encapsuled phase change material is effective method for floor heating of house and building. The temperature profile in capsule block and flow rate of hot water are important parameters for the development of heat storage system. In the present study, a mathematical model based on 3-D, non-steady state, Navier-Stokes equations, scalar conservation equations and turbulence model ($\kappa$-$\varepsilon$), is used to predict the temperature profiles in capsule and the velocity vectors in hot water pipe. The multi-block grids and fine grids embedding are used to join the circle in hot water pipe and square in capsule block. The phase change process of the capsule is quite complex not only because the size of phase change material is very small, but also because phase change material is mixed with the cement to form thermal storage block. In calculation, it's assumed that the phenomena of phase change is limited only the thermal properties of phase change material and the change of boundary is not happened in capsule. The purpose of this study is to calculate the temperature profiles in capsule block and velocity vectors in hot water pipe using the numerical calculation. Two kinds of thermal boundary condition were considered, the first (case 1) is the adiabatic condition for the both outside surfaces of the wall, the second (case 2) is the case in which one surface is natural convection with atmosphere and another surface is adaibatic. Calculation results are shown that the temperature profile in capsule block for case 1 is higher than that for case 2 due to less heat loss in adaibatic surface. Specially, in the domain of near Y=0, the difference of temperature is greater in case 1 than in case 2. The detailed experimental data of capsule block on the temperature profile and the thermal properties such as specific heat and coefficient of heat transfer with the various temperature are required to predict more exact phenomena of heat transfer.

  • PDF

A Simulation of Temperature Control of Greenhouse with Hot-Water Heating System (온수난방시스템 온실의 온도제어 시뮬레이션)

  • 정태상;하종규;민영봉
    • Journal of Bio-Environment Control
    • /
    • v.8 no.3
    • /
    • pp.152-163
    • /
    • 1999
  • It is required to analyze the controlled response of air temperature in greenhouse according to control techniques for precise control. In this study, a mathematical model was established for air heating of greenhouse with hot-water heating system The parameters of the model were decided by regression analysis using reference data measured at the greenhouse being heated In the simulation for the digital control of air temperature in the greenhouse, the mathematical model to evaluate the control performances was used. Tested control methods were ON-OFF contpol, p control, rl control and PID control. The mathematical model represented by inside air temperature ( T$_{i}$), hot-water temperature (T$_{w}$) in heating pipe and outside air temperature (T$_{o}$) was expressed as a following discrete time equation ; T$_{i}$($textsc{k}$+1)= 0.851.T$_{i}$($textsc{k}$)+0.055.T$_{w}$($textsc{k}$)+0.094.T$_{o}$($textsc{k}$) Control simulations for various control methods showed the settling time, the overshoot and the steady state nor as follows; infinite time, 3.5$0^{\circ}C$, 3.5$0^{\circ}C$ for ON-OFF control : 30min 2.37$^{\circ}C$, 0.51$^{\circ}C$ for P control; 21min, 0.0$0^{\circ}C$, 0.23$^{\circ}C$ for PI control; 18min 0.0$0^{\circ}C$, 0.23$^{\circ}C$ for PID control, respectively. PI and PID controls appeared to be optimal control methods. There was no effect of differential gain on the heating process but much effect of integral gain on it.on it.

  • PDF

Calcium Current in the Unfertilized Egg of the Hamster

  • Haan, Jae-Hee;Cho, Soo-Wan;Yang, Young-Sun;Park, Young-Geun;Park, Hong-Gi;Chang, Gyeong-Jae;Kim, Yang-Mi;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.215-224
    • /
    • 1994
  • The presence of a calcium current $(i_{Ca^{2+}})$ passed via a specific channel was examined in the unfertilized hamster egg using the whole-cell voltage clamp technique. Pure inward current was isolated using a $Ca^{2+}-rich$ pipette solution containing 10 mM TEA. This current was independent of external $Na^+$ and was highly sensitive to the $Ca^{2+}$ concentration in the bathing solution, indicating that the inward current is carried by $Ca^{2+}$. The maximal amplitude was $-4.12{\pm}0.58nA\;(n=12)$ with 10mM $Ca^{2+}$ at -3OmV from a holding potential of -8OmV. This current reached its maximum within 20ms beyond -3OmV and decayed rapidly with an inactivation time constant $({\tau})$ of 15ms. Activation and inactivation of this $i_{Ca^{2+}}$ was steeply dependent on the membrane potential. The $i_{Ca^{2+}}$ began to activate at the lower voltage of -55 mV and reached its peak at -35 mV, being completely inactivated at potentials more positive than -40 mV. These result suggest that $i_{Ca^{2+}}$ in hamster eggs passes through channels with electrical properties similar to low voltage-activated T-type channels. Other results from the present study support this suggestion; First, the inhibitory effect of $Ni^{2+}\;(IC_{50}=13.7\;{\mu}M)$ was more potent than $Cd^{2+}\;(IC_{50}=123\;{\mu}M)$. Second, $Ba^{2+}$ conductance was equal to or below that of $Ca^{2+}$. Third, $i_{Ca^{2+}}$ in hamster eggs was relatively insensitive to nifedipine $(IC_{50}=96.6\;{\mu}M)$, known to be a specific t-type blocker. The physiological role of $i_{Ca^{2+}}$ in the unfertilized hamster eggs remains unclear. Analysis from steady-state inactivation activation curves reveals that only a small amount of this current will pass in the voltage range $(-70{\sim}-30\;mV)$ which partially overlaps with the resting membrane potential. This current has the property that it can be easily activated by a weak depolarization, thus it may trigger a certain kind of a intracellular event following fertilization which may cause oscillations in the membrane potential.

  • PDF

Pharmacokinetics and Tissue Distribution of DWP20367, a Novel Fluoroquinoloce, in Rats and Beagle Dogs (신규 플루오로퀴놀론계 DWP20367의 흰쥐 및 개에서의 체내동태와 조직분포)

  • 조재열;한승희;김병오;남권호;손호정;유영효;정대영
    • Biomolecules & Therapeutics
    • /
    • v.5 no.3
    • /
    • pp.284-291
    • /
    • 1997
  • The pharmacokinetics and tissue distribution of DWP20367 (1-cyclopropyl-6-fluoro-8-chloro-7-(2, 7-diazabicyclo[3,3,0]tract-4-ene-7-yl)-1,4-dihydro-4-oxoquinoline-3-carboxylic acid), a novel fluoroquinolone, were examined in rats and beagle dogs after a single intravenous and oral administration. Analysis of DWP20367 in plasma, tissue, and urine was determined by both HPLC and microbiological assay (bioassay). The plasma concentration-time curves of the drug in rats and beagle dogs were biexponentially declined. The terminal half-life (t$_{1}$2$\beta$/) of the drug in rats was about 60.1 $\pm$7.3 min (i.v.) and 61.3 $\pm$ 12.4 min (p.o.) in bioassay, and 86.3 $\pm$19.8 min (i.v.) and 50.9$\pm$ 14.9 min (p.o.) in HPLC. In beagle dogs, half-life of the drug determined by bioassay was about 121.8$\pm$6.2 min (i.v.) and 111.0$\pm$7.6 min (p.o.). The volume of distribution at steady-state (Vd$_{ss}$ ) was 243.8$\pm$74.1 ml/kg (bioassay) and 339.2$\pm$84.3 ml/kg (HPLC) in rats, and 1587.5 $\pm$536.9 ml/kg (bioassay) in beagle dogs. The total body clearance (Cl$_{t}$) of DWP20367 was 3.4 $\pm$ 0.4 ml/min/kg (bioassay) and 2.4$\pm$0.4 ml/min/kg (HPLC) in rats, and 12.3$\pm$ 1.0 ml/min/kg (bioassay) in beagle dogs, respectively. The extent of bioavailability after oral administration was 89.1%(bioassay) and 79.9% (HPLC) in rats, and 78.7% (bioassay) in beagle dogs. Urinary recovery (24-h) assayed by bioassay was 0.7% (p.o.) and 1.2% (i.v.) in rats, and 0.8% (p.o.) and 1.0% (i.v.) in beagle dogs. In rats, 24-h fecal recovery determined by bioassay was 11.2% (p.o.) and 0.1% (i.v.). Rat and human serum protein binding ratios at 2$\mu$g/ml were about 90~91%. This drug determined by bioassay was also distributed by the order of liver, kidney, lung, heart, spleen and muscle 30 min after oral administration.on.

  • PDF

Fabrication and mdchanical properties of $AC4A/SiC_p$ composites by mechanical alloying (기계적합금화에 의한 $AC4A/SiC_p$복합재료의 제조 및 기계적 특성)

  • Lee, Byung-Hun;Cho, Hyung-Jun;Lim, Young-Ho;Lee, Jun-Hee
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.651-661
    • /
    • 1994
  • Utilizing Mechanical Alloy Process, that were obt,ained the results from investigated formation process of AC4A/$SiC_p$. composite material powders and mechanical properties of their extrusion materials. The obtained results are as follow conclusions. AC4A-lOwt.% $SiC_p$ powders which were mechanically alloyed at 150rpm for 420min have been obtained finely and uniformly rounded powder particals that were reached the steady state which was saturated micro hardness about tlv 230 in the range size of 1 0 ~ 2 0$\mu \textrm{m}$. EDAX analysis tests have been resulted in a little amount of I'e conrents increasing with MA times, the artifical aging of AC4A/S$SiC_p$ composite materials was obtained the hardness with solution treated at $525^{\circ}C$ for lOhrs the maximum value of Hv 230 with aging at. $170^{\circ}C$ for 1000min. The Intensity and width of X-ray diffraction pattern were decreasing and widening because of grain boundary refinement and heterogeneous strain during mechanical alloying. Tensile tests at room temperature were carried out the maximum value of 37 Kgf/$\mu \textrm{mm}^2$ with ext,rused materials, 27 Kgf/$\mu \textrm{mm}^2$ with heat treated them at $500^{\circ}C$.

  • PDF

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

On-site Application of a Vehicle Tunnel Ventilation Simulator (도로터널 환기시뮬레이션 모델 현장적용 연구)

  • 이창우;김효규
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.319-327
    • /
    • 2001
  • Introduction of new design tools has been required to optimally design and operate the ventilation system of long vehicle tunnels.. The demand has led to wide spread use of the simulation technique throughout the would to analysis the dynamic relationship among the variables associated with vehicle tunnel ventilation. This paper aims at performing on-site study at local tunnels to test the applicability of NETVEN, a simulation model vehicle tunnel ventilation. The study was carried out at four urban as well as highway tunnels model of vehicle tunnel ventilation. The study was carried out at four urban as well as highway tunnels employing different ventilation systems as well as traffic methods. There were some discrepancies sound between the simulation output and measurements and the following four factors are considered to mainly cause those disagreement. (1) The real situation shows distinctive transient and retarding characteristics with respect to air flow and contaminant dispersion, while ventilation forces are not steady-state and in particular those traffic and climatic variables show significant instantaneous variation. (3) Near the exit portal, the CO levels show bigger differences. The general trend is that data with higher CO concentrations carry bigger discrepancies. Turbulent diffusion is though to be the main reason for it and also contribute to the fact hat the highest CO concentrations are found at the locations somewhat inward, not at the exit portals. (4) Higher traffic rate results in higher discrepancies of ventilation velocity. Along with the exhaust characteristics, the vehicle aerodynamic characteristics need to be studied continuously in order to reduce the velocity disagreement.

  • PDF

Analysis of Transient Performance of KALIMER-600 Reactor Pool by Changing the Elevation of Intermediate Heat Exchanger (중간 열교환기 높이 상승에 의한 KALIMER-600 원자로 풀 과도 성능 변화 분석)

  • Han, Ji-Woong;Eoh, Jae-Hyuk;Kim, Seong-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.991-998
    • /
    • 2010
  • The effect of increasing the elevation of an IHX (intermediate heat exchanger) on the transient performance of the KALIMER-600 reactor pool during the early phase of a loss of normal heat sink accident was investigated. Three reactors equipped with IHXs that were elevated to different heights were designed, and the thermal-hydraulic analyses were carried out for the steady and transient state by using the COMMIX-1AR/P code. In order to analyze the effects of the elevation of an IHX between reactors, various thermal-hydraulic properties such as mass flow rate, core peak temperature, RmfQ (ratio of mass flow over Q) and initiation time of decay heat removal via DHX (decay heat exchanger) were evaluated. It was found that with an increase in the IHX elevation, the circulation flow rate increases and a steep rise in the core peak temperature under the same coastdown flow condition is prevented without a delay in the initiation of the second stage of cooling. The available coastdown flow range in the reactor could be increased by increasing the elevation of the IHX.