• Title/Summary/Keyword: Steady-State Response

Search Result 658, Processing Time 0.027 seconds

Fuzzy PWM Speed Algorithm for BLDC Motor (BLDC 모터용 Fuzzy PWM 속도 알고리즘)

  • Shin, Dong-Ha;Han, Sang-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.295-300
    • /
    • 2018
  • Conventionally, a PI control algorithm has been widely used as a speed control algorithm for BLDC motor. The PI control algorithm has a disadvantage in that is slow to reach the steady state due to the slow speed and torque response with various speed changes. Therefore, in this paper, PWM fuzzy logic control algorithm which can reach the steady state quickly by improving the response speed although there is a little overshoot is proposed. PWM reduces response speed and fuzzy logic control algorithm minimizes overshoot. The proposed PWM fuzzy logic control algorithm consists of DC chopper, PWM duty cycle regulator, and fuzzy logic controller. The performance and validity of the proposed algorithm is verified by simulation with Simulink of Matlab 2018a.

Flight control of a small unmanned aerial vehicle using a dynamic compensator (동적 보상기를 이용한 소형 무인항공기 비행 제어)

  • Kim, Heui-Joo;Kim, Jea-Wook;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.571-577
    • /
    • 2012
  • In this paper, we design a flight controller using a dynamic compensator for a small unmanned aerial vehicle. The proposed method ensures flight stability during altitude holding and waypoints passing by improving the transient response and steady state error. The control system consists of dual feedback loops with an inner loop and a outer loop. The inner loop has a PD controller to improves the transient response and the outer loop has a dynamic compensator to reduce overshoot in the transient response and improve the steady state error. The performance of the proposed method is evaluated by flight test on a small UAV.

An Experimental Study on the Rotary Regenerator for Air Conditioning according to Variable Inlet Conditions (흡기조건의 변화에 따른 공기조화용 회전재생기에 관한 실험적 연구)

  • 이태우;조진호;서정일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.422-429
    • /
    • 1990
  • The experimental study investigates two aspects of counterflow sensible heat regenerator operation. First, it examines the regenerator performance in periodic steady state operation with spatially nonuniform inlet temperature in one of the fluid stream. Second, the study examines the transient response of a regenerator to a step change in the inlet temperature of one of the fluid streams. The effect of transient inlet temperatures is analyzed in terms of the response of the outlet fluid temperatures to a step change in temperature of one of the inlet fluid streams. The effect of temperature nonuniformities is analyzed in terms of the change of temperature nonuniformities is analyzed in terms of the change in steady state effectiveness due to a circumferential temperature distribution in one of the inlet fluid streams. an experimental analysis has been conducted using a counterflow, parallel passage, and rotary regenerator made from polyethylene film. Efficiencies follow similar trends with increasing matrix to fluid capacity rate ratio for the balanced and symmetric regenerator with nonuniform inlet temperature.

A Study on Dynamic Characteristics of Rotating Transmission Using PID Control (PID 제어기를 이용한 회전전동장치의 동특성에 관한 연구)

  • Kim Jae-Kyung;Kim Jong-Tye;Kim Taek-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.41-48
    • /
    • 2005
  • The Rotating transmission is made up of belts, mass disks and gears. This transmission is controlled electro-mechanically by the motor and operation program. The control strategy of the system can be to change belts' stiffness and the masses of mass disk and gear. This system can be modeled as a rigid body, and also finds broad application in such diverse fields as machine tools, the cruise control system In automobiles, and control in the attitude and gimbals of spacecraft. This Transmission proves the necessity and effect of a closed loop control. The study of the Rotating Transmission excited by its base motion is able not only to predict the rotational performance, but to obtain the fundamental data for vibration isolation. In this research, we compared the response characteristics of the two controllers by means of the experiments on PD controller and PID controller added on integral action. Furthermore, we studied the response abilities such as steady state error, overshoot, and ect. and the response velocities such as rising time, settling time, and ect. in the rotating transmission.

Hydrogen-Sensing Behaviors of Pd- and Pt-SiC Schottky Diodes (Pd- 및 Pt-SiC 쇼트키 다이오드의 수소가스 감지 특성)

  • Kim, Chang-Kyo;Lee, Joo-Hun;Cho, Nam-In;Hong, Jin-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.388-393
    • /
    • 2000
  • Hydrogen-sensing behaviors of Pd- and Pt-SiC Schottky diodes, fabricated on the same SiC substrate, have been systematically compared and analyzed as a function of hydrogen concentration and temperature by I-V and$\DeltaI-t$ methods under steady-state and transient conditions. The effects of hydrogen adsorption on the device parameters such as the barrier height are investigated. The significant differences in their hydrogen sensing characteristics have been examined in terms of sensitivity limit, linearity of response, response rate, and response time. For the investigated temperature range, Pd-SiC Schottky diode shows better performance for H2 detection than Pt-SiC Schottky diode under the same testing conditions. The physical and chemical mechanisms responsible for hydrogen detection are discussed. Analysis of the steady-state reaction kinetics using I-V method confirmed that the atomistic hydrogen process is responsible for the barrier height change in the diodes.

  • PDF

Nonlinear Forced Torsional Vibration for the Engine Shafting System With Viscous Damper (점성댐퍼를 갖는 엔진 축계의 비선형 비틀림강제진동)

  • 박용남;송성옥;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.50-58
    • /
    • 1996
  • The torsional vibration of the propulsion shafting system equipped with viscous damper is investigated. The equivalent system is modeled by a two mass softening system with Duffing's oscillator and the vibratory motion is described by non-linear differential equations of second order. The damper casing is fixed at the front-end of crankshaft and the damper's inertia ring floats in viscous silicon fluid inside of the camper casing. The excitation frenquency is proportional to the rotational speed of engine. The steady state response of the equivalent system is analyzed by the computer and for this analyzing, the harmonic balance method is adopted as a non-linear vibration analysis technique. Frequency response curves are obtained for 1st order resonance only. Jump phenomena are explained. The discriminant for the solutions of the steady state response is derived. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisions with both data, it was confirmed that Duffing's oscillator can be used in the modeling of the propulsion shafting system attached with viscous damper with non-linear stiffness.

  • PDF

Nonlinear Forced Torsional Vibration for the Engine Shafting System With Viscous Damper (점성댐퍼를 갖는 엔진 축계의 비선형 비틀림강제진동)

  • Park, Y.N;Song, S.O;Kim, U.K;Jeon, H.J
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.372-372
    • /
    • 1996
  • The torsional vibration of the propulsion shafting system equipped with viscous damper is investigated. The equivalent system is modeled by a two mass softening system with Duffing's oscillator and the vibratory motion is described by non-linear differential equations of second order. The damper casing is fixed at the front-end of crankshaft and the damper's inertia ring floats in viscous silicon fluid inside of the camper casing. The excitation frenquency is proportional to the rotational speed of engine. The steady state response of the equivalent system is analyzed by the computer and for this analyzing, the harmonic balance method is adopted as a non-linear vibration analysis technique. Frequency response curves are obtained for 1st order resonance only. Jump phenomena are explained. The discriminant for the solutions of the steady state response is derived. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisions with both data, it was confirmed that Duffing's oscillator can be used in the modeling of the propulsion shafting system attached with viscous damper with non-linear stiffness.

A Speed Sensorless Induction Motor Control System using Direct Torque Control for Torque Ripple Reduction (직접 토크제어의 토크맥동 저감을 위한 속도검출기 없는 유도전동기 제어 시스템)

  • Kim, Nam-Hun;Kim, Min-Ho;Kim, Min-Huei;Kim, Dong-Hee;Hwang, Don-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.986-988
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). Some drawbacks of the classical DTC are the relatively large torque ripple in a low speed range and notable current pulsation during steady state. They are reflected speed response and increased acoustical noise. In this paper, the DTC quick response are preserved at transient state, while better qualify steady state performance is produced by space vector modulation (SVM). The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAC) with rotor flux linkages for the speed fuming signal at low speed range, two hysteresis controllers and optimal switching look-up table. Simulation results of the suggest system for the 2.2 [kW] general purposed induction motor are presented and discussed.

  • PDF

Double DOF control of an electromechanical integrated toroidal drive

  • Xu, Lizhong;Liu, Xin
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.115-131
    • /
    • 2007
  • The electromechanical integrated toroidal drive is a new drive system. For the control of the drive, the torque fluctuation and the steady-state errors should be removed and the fast response to the input change should be achieved. In this paper, the torque fluctuation of the drive system is analyzed and expressed as Fourier series forms. The transfer function of the torque control for the drive system is derived from its electromechanical coupled dynamic equations. A 2-DOF control method is used to control the drive system. Using definite parameter relationship of the 2-DOF control system, the steady errors of the torque control for the drive system is removed. Influences of the drive parameters on the control system are investigated. Using proper drive parameters, the response time of the control system is reduced and the quick torque response of the drive system is realized. Using a compensated input voltage, the torque fluctuation of the drive system is removed as well. The compensated input voltage can be obtained from the torque fluctuation equation and the transfer function. These research results are useful for designing control system of the new drive.

Load Frequency Control by Optimal Linear Tracking (최적선형 추적법에 의한 부하-주파수제어)

  • 김훈기;곽노홍;문영현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.2
    • /
    • pp.83-92
    • /
    • 1989
  • This paper presents a load frequency control by optimal linear tracking, which can be well adapted to practical power systems with successive load disturbances. Conventional Load Frequency Controls (LEC's) have a feedback control scheme of the state error deviated from the post-disturbance steady state. This requires the modification of reference everytime the system encounters load changes. In this study, a new feedback scheme of LEC is developed by using the optimal linear tracking method with a fixed reference. As a result, the proposed LFC, which requires no reference modification, can be efficiently applied to power systems with successive disturbances such as load changes due to the on-off operations of reclosers or feeder switches. Another feature of the proposed LFC is that it adopts an algorithm to calculate an optimal post-fault steady state with the consideration of control input changes. The proposed LFC has been tested for a 2-area power system, which shows that it can be well adapted to successive load disturbances with good frequency response.

  • PDF