• Title/Summary/Keyword: Steady flow

Search Result 2,036, Processing Time 0.023 seconds

Steady Stokes flow analysis using Axial Green's Function Formulation (축그린함수법을 이용한 정상상태의 스톡스유동해석)

  • Kim, D.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.256-258
    • /
    • 2011
  • Using the axial Green's function method for Steady Stokes flows, we introduce a new pressure correction formula to satisfy the incompressibility condition, in which the pressure is related to the integral of the second order derivatives of the velocity. Based on this formula, we propose the iterative method for solving the Stokes flows in complicated domains. Even if the domain is complex, this method maintains the second order of convergence for the velocity.

  • PDF

Mathematical Modelling of Steady Cavitation Flow inside the Diffuser (Diffuser내의 정상 캐비테이션 유동 해석을 위한 수학 모델링)

  • ;;Sergienko A.A.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.7-13
    • /
    • 2002
  • In this study, the mathematical model on the various complicated levels of the viscous liquid flows in the symmetric channel with the complicated shape was introduced and the assumptions applied to the simplified model was proposed. To analyse the steady cavitation flow, axis transform of physical region to non-dimensional region was performed, and multigrid were generated. Using this model, the steady cavitation flow was calculated, and good coincidence between experiment and calculation was achieved.

A study on the performance of the perforated tube exhaust muffler (다공형 배기 소음기의 성능에 관한 연구)

  • 권영필;이동훈;방정환
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.48-59
    • /
    • 1992
  • This study is on the performance of the perforated tube muffler when it operates as an exhaust silencer with through-flow, steady or pulsating. Theoretical estimation of the insertion loss was made by means of transfer matrix and by using the impedance equation for the perforated tube obtained for the case of low-speed steady through-flow. Experiment was performed for the measurement of the insertion loss at two flow conditions. The one is a steady flow from the exhaust pipe of an idling diesel engine. The effect of the through-flow velocity and steadiness on the muffler performance was obtained. By comparing the theoretical prediction with the experimental result, the validity of the impedance equation in the theoretical model was discussed. It has been found that steadiness as well as magnitude of the through-flow has a significant effect on the performance of the perforated tube muffler. Especially, the self-noise due to the pulsating flow in the engine exhaust system must be taken into account for the prediction of the muffler performance.

  • PDF

Characteristics of In-cylinder Steady Flow using PIV for Different Intake Port Geometries in a 4-valve Gasoline Engine (PIV에 의한 4밸브 가솔린기관의 흡기포트 형상에 따른 정상유동 해석)

  • 조규백;전충환;장영준;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.188-196
    • /
    • 1997
  • Many researchers have developed the measurement technique of in-cylinder flow characteristics and found the effect of intake port geometries on engine performance. The flow characteristics of four-valve cylinder head were examined in a steady flow rig for different intake ports. Tumble intensity of intake configurations with different entry angles were quantified with a tumble meter. The velocity and angular momentum distributions in the tumble adaptor were measured under steady conditions with PIV(Particle Image Velocimetry). We have obtained the results that flow structure becomes complicated by valve interference at low valve lift. As the valve interferences were reducing and the flow pattern changed to large vortex structure with tumble direction, intake ports with different entry angles have different tumble centers. Tumble eccentricity of intake port with low entry angle was large, so that the port had relatively much angular momentum compared to others which was expected to improve combustion performance.

  • PDF

Development of a 3-D Incompressible Flow Solver Based on an Artificial Compressibility Method (가상 압축성 기법을 이용한 삼차원 비압축성 유동해석 코드 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.614-617
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulations of three dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence free flow field at each physical time step. The one equation Spalart-Allmaras turbulence model has been adopted to solve the high-Reynolds number flow fields. This method has been applied to calculate the steady flow fields around submarine configurations and unsteady flow fields around a 3-D infinite cylinder.

  • PDF

Laminar Flow over Two Spheres in a Tandem Arrangement (직렬로 배열된 두 개의 구를 지나는 층류 유동)

  • Kim Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.480-488
    • /
    • 2006
  • Numerical simulations of flow over two spheres placed in a tandem arrangement are conducted to investigate the effect of the inter-sphere spacing on the flow characteristics. The Reynolds numbers considered are 100, 250, 300 and 425, corresponding to steady axisymmetric, steady planar-symmetric, unsteady planar-symmetric, and unsteady asymmetric flows, respectively, in the case of a single sphere. For small inter-sphere spacings, the flow past two spheres is more stable than that past a single sphere. For example, with the spacing of the sphere radius, the flow is steady axisymmetric up to Re=300. However, for relatively large spacings, the flow past two spheres becomes unstable and vortex shedding takes place even at Re=250. The drag coefficient of the rear sphere decreases significantly with decreasing inter-sphere spacing due to reduction of the stagnation pressure, thus being smaller than that of the front sphere. Also, the rear sphere shows large fluctuations of the lift force as compared to the front one in the case of unsteady flow.

A study on the critical reynolds number of steady, oscillatory and pulsating flow in a straight duct (직관덕트내에서 정상유동, 진동유동과 맥동유동의 임계레이놀즈수에 관한 연구)

  • 박길문;봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.16-20
    • /
    • 1998
  • The critical reynolds number in a square-sectional straight duct is investigated experimentally. The experimental study for the air flow in a square-sectional straight duct is carried out to calssify critical Reynolds number on steady flow and unsteady flow. To calssify the critical Reynolds number we obtained velocity waveform by using a hot-wireanemometer and data acquisition system with photocorder.

  • PDF

A Study of the Transient Flow Characteristics of a Vacuum Ejector-Diffuser System.

  • Rajesh, G.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2769-2774
    • /
    • 2007
  • In vacuum ejector-diffuser systems where a finite volume secondary chamber is used, the secondary jet exhibits transient characteristics during start-up. A steady state is achieved after some time in which mass entrainment prevails indefinitely inside the ejector, though there is no flow from the secondary chamber. An attempt is made in this work to study the infinite entrainment of secondary jet into the primary jet from a finite secondary chamber, with the help of a computational fluid dynamics method. The present study is also intended to identify the operating range of vacuum ejector-diffuser systems where the steady flow assumption can be applied without uncertainty. The results obtained show that the only condition in which an infinite mass entrainment is possible is the generation of a re-circulation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium at this point. Steady flow assumption is valid only after this point.

  • PDF

Secondary Steady Flows Due to the Small-Amplitude In-Phase Oscillation of Multi-Cylinders (다수의 주상체들의 저진폭 동위상 진동에 의한 2차 정상유동 해석)

  • Kim, Seong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.649-658
    • /
    • 1996
  • Small-amplitude harmonic oscillations of multi-cylinders are considered both experimentally and theoretically. For the theoretical model, the flow regime is separated into inner and outer regions. In the inner region, the flow is governed by the generalized Stokes boundary layer equation. In the outer region, the full Navier-Stokes equation for the steady streaming flow is solved numerically by using ADI scheme and FVM coupled with the boundary integral method. Flow visualization experiments are conducted by using the Laser Sheet Image Technique. The case of two circular cylinders and square cylinders with variable distances are chosen as a typical example. Although experimental results are based on the flow in the finite domain, both experimental and numerical results agree well qualitatively. As the separation of cylinders is increased, a numerical result shows the asymptotic convergence to a single cylinder case.

Determining the flow curves for an inverse ferrofluid

  • Ekwebelam, C.C.;See, H.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • An inverse ferrofluid composed of micron sized polymethylmethacrylate particles dispersed in ferrofluid was used to investigate the effects of test duration times on determining the flow curves of these materials under constant magnetic field. The results showed that flow curves determined using low duration times were most likely not measuring the steady state rheological response. However, at longer duration times, which are expected to correspond more to steady state behaviour, we noticed the occurrence of plateau and decreasing flow curves in the shear rate range of $0.004\;s^{-1}$ to ${\sim}20\;s^{-1}$, which suggest the presence of nonhomogeneities and shear localization in the material. This behaviour was also reflected in the steady state results from shear start up tests performed over the same range of shear rates. The results indicate that care is required when interpreting flow curves obtained for inverse ferrofluids.