• 제목/요약/키워드: Steady flow

검색결과 2,037건 처리시간 0.021초

PEM 연료전지 유로에서 물의 거동에 대한 CFD 해석 (CFD analysis on the behavior of liquid water in flow channel of PEM fuel cell)

  • 김현일;남진현;신동훈;정태용;김영규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.23-26
    • /
    • 2007
  • Liquid water in flow channel is an important factor that limits the steady and transient performance of PEM fuel cells. A computational fluid dynamics study based on the volume-of-fluid (VOF) multi-phase model is conducted to understand the transport behavior of liquid water in flow channel. The liquid water transport in $180^{\circ}$ bends is investigated and the effect of chamfering is discussed. The effect of wall adhesion is also considered by varying the contact angle of channel surfaces. The result of this study is believed to provide a useful guideline for design optimization of flow patterns or channel configurations of PEM fuel cells.

  • PDF

유리 용융로에서 자연대류의 열적 불안정성 (Thermal Instability of Natural Convection in a Glass Melting Furnace)

  • 임광옥;이관수
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1774-1783
    • /
    • 1998
  • The transition from steady laminar to chaotic convection in a glass melting furnace specified by upper surface temperature distribution has been studied by the direct numerical analysis of the two and three-dimensional time dependent Navier-Stokes equations. The thermal instability of convection roll may take place when modified Rayleigh number($Ra_m$) is larger than $9.71{\times}10^4$. It is shown that the basic flows in a glass melting furnace are steady laminar, unsteady periodic, quasi-periodic or chaotic flow. The dimensionless time scale of unsteady period is about the viscous diffusion time, ${\tau}_d=H^2/{\nu}_0$. Through primary and secondary instability analyses the fundamental unsteady feature in a glass melting furnace is well defined as the unsteady periodic or weak chaotic flow.

텀블-스월 변환장치 형상이 흡입텀블 특성화에 미치는 영향 (Effects of Tumble Adaptor Configurations on the Intake Tumble Characterization)

  • 강건용;이진욱;백제현
    • 한국자동차공학회논문집
    • /
    • 제2권5호
    • /
    • pp.66-73
    • /
    • 1994
  • The configuration effects of a tumble adaptor which transforms tumble into swirl on the intake tumble characterization under steady flow condition have been investigated by LDV measurement The following parameters were involved to test their effects on tumble-swirl conversion characteristics ; the cylinder height and its bottom shape, measuring position in the swirl induction pipe, and the relative direction of the induction pipe. The short cylinder height and the flat bottom of the tumble adaptor were found effective for the generation of tumble in the cylinder, allowing higher tumble-swirl conversion efficiency.

  • PDF

Brownian Dynamics Simulation Study on the Anisotropic FENE Dumbbell Model for Concentrated Polymer Solution and the Melt

  • 심훈구;이창준;김운전;배형석
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권9호
    • /
    • pp.875-881
    • /
    • 2000
  • We study the rheological properties of concentrated polymer solution and the melt under simple shear and elon-gational flow using Brownian dynamicssimulation. In order to describe the anisotropic molecular motion, we modifiedthe Giesekus' mobility tensor by incorporating the finitely extensible non-linear elastic (FENE) spring force into dumbbell model. To elucidate the nature of this model, our simulation results are compared with the data of FENE-P ("P"standsfor the Perterin) dumbbell model and experiments. While in steady state both original FENE and FENE-P models exhibit a similar viscosity response,the growthof viscosity becomes dissimilar as the anisotropy decreases and the flowrate increases. The steady state viscosity obtained from the simulation well describes the experiments including the shear-thinning behavior in shear flow and viscosity-thinning behavior in elongational flow. But the growth of viscosity oforiginal FENE dumbbell model cannot describe the experimental results in both flow fields.

A 3-D Steady-State Analysis of Thermal Behavior in EHV GIS Busbar

  • Lei, Jin;Zhong, Jian-ying;Wu, Shi-jin;Wang, Zhen;Guo, Yu-jing;Qin, Xin-yan
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.781-789
    • /
    • 2016
  • Busbar has been used as electric conductor within extra high voltage (EHV) gas insulated switchgear (GIS), which makes EHV GIS higher security, smaller size and lower cost. However, the main fault of GIS is overheating of busbar connection parts, circuit breaker and isolating switch contact parts, which has been already restricting development of GIS to a large extent. In this study, a coupled magneto-flow-thermal analysis is used to investigate the thermal properties of GIS busbar in steady-state. A three-dimensional (3-D) finite element model (FEM) is built to calculate multiphysics fields including electromagnetic field, flow field and thermal field in steady-state. The influences of current on the magnetic flux density, flow velocity and heat distribution has been investigated. Temperature differences of inner wall and outer wall are investigated for busbar tank and conducting rod. Considering the end effect in the busbar, temperature rise difference is compared between end sections and the middle section. In order to obtain better heat dissipation effect, diameters of conductor and tank are optimized based on temperature rise simulation results. Temperature rise tests have been done to validate the 3-D simulation model, which is observed a good correlation with the simulation results. This study provides technical support for optimized structure of the EHV GIS busbar.

화강암반내 단층지역에 위한 지하 방사성폐기물 처분장 인접지역에서의 열-수리-역학적 연성거동 비교 연구 (A comparison study on coupled thermal, hydraulic, and mechanical interactions associated with an underground radwaste repository within a faulted granitic rock mass)

  • 김진웅;배대석;강철형
    • 지질공학
    • /
    • 제11권3호
    • /
    • pp.255-267
    • /
    • 2001
  • 지하 50m의 화강암반내 단층지역에 위치한 지하 방사성폐기물 처분장 인접지역에서의 열, 수리, 및 역학적 연성거동을 비교하고 분석하였다. 해석에는 2차원 해석코드인 UDEC을 사용하였다. 해석모델은 화강암반, 처분공내의 압축 벤토나이트로 둘러싸인 PWR 사용후 핵연료 처분용기, 및 처분동굴내에 채워진 혼합 벤토나이트를 포함한다. 수리-역학적, 열-역학적, 및 열-수리-역학적 연성거동을 비교 및 분석하였다. PWR 사용후 핵연료내의 방사성 물질로부터 나오는 시간의존 방사성 붕괴열이 처분장 및 인접지역에 미치는 영향을 분석하였다. 수리해석에는 steady state flow 알고리즘을 사용하였다.

  • PDF

대형 LPG 엔진의 흡입 스월비에 따른 연소성능에 관한 연구 (The Effect of Intake Swirl Ratios on Combustion Performance in a Heavy-Duty LPG Engine)

  • 한병주;김창업;강건용;이창식
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.46-53
    • /
    • 2001
  • To optimize the intake flow condition in the heavy-duty LPG SI engine, five different swirl ratios of intake port were investigated experimentally by oil spot method, LDV and single cylinder engine test. The flow characteristics near the piston surface were observed by oil spot method and magnitudes of swirl flow were measured quantatively by LDV method in the steady flow rig. The engine performances of various swirl flow were also tested with the heavy-duty LPG SI single cylinder engine. In the results, high swirl ratio, above $R_s$=2.3, was not suitable to develope a stable flame kernel and to produce high engine performance. Especially it was more serious under lean burn conditions, since turbulence intensity was smaller than bulk flow though those are increased together. These results were also confirmed by LDV measurement and oil spot method. On the contrary, low swirl ratio($R_s$=1.3) is not good to propagate a flame since the turbulence intensity and bulk flow are vanished during compression stroke and low swirl ratio has too weak initial energy for stable combustion. Therefore, the of optimized swirl ratio f3r the heavy-duty LPG engine in this work was found around $R_s$=2.0.

  • PDF

Improvement and validation of a flow model for conical vortices

  • Ye, Jihong;Dong, Xin
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.113-144
    • /
    • 2014
  • Separation bubble and conical vortices on a large-span flat roof were observed in this study through the use of flow visualization. The results indicated that separation bubble occurred when the flow was normal to the leading edge of the flat roof. Conical vortices that occur under the cornering flow were observed near the leading edge, and their appearance was influenced by the wind angle. When the wind changed from along the diagonal to deviating from the diagonal of the roof, the conical vortex close to the approaching flow changed from circular to be more oblong shaped. Based on the measured velocities in the conical vortices by flow visualization, a proposed two-dimensional vortex model was improved and validated by simplifying the velocity profile between the vortex and the potential flow region. Through measured velocities and parameters of vortices, the intensities of conical vortices and separation bubble on a large-span flat roof under different wind directions were provided. The quasi-steady theory was corrected by including the effect of vortices. With this improved two-dimensional vortex model and the corrected quasi-steady theory, the mean and peak suction beneath the cores of the conical vortices and separation bubble can be predicted, and these were verified by measured pressures on a larger-scale model of the flat roof.

압력섭동에 의한 유량변동 측정 정량화 (Quantifying the Variation of Mass Flow Rate generated by Pressure Fluctuation)

  • 길태옥;김동준;조성호;안규복;한영민;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.152-156
    • /
    • 2007
  • 로켓 엔진에서 연소챔버 내의 압력섭동에 의해 발생되는 추진제 유량변동에 대한 현상을 파악하는 것은 매우 중요하다. 이를 위해 압력섭동이 발생되었을 때 유량변동의 측정에 대한 정량화를 수행하였다. 오리피스 내의 유동의 속도를 알기 위해 오리피스 내의 압력을 측정한 후 이론식에 입각하여 속도를 풀었고, 액막두에 측정장치를 이용하여 오리피스 내에서의 면적을 측정하였다. 정상상태에서의 속도 및 유량을 분석값과 비교한 결과, 매우 작은 오차내에서 일치함을 알 수 있었다. 따라서, 본 연구에서 도출된 이론식을 바탕으로 비정상상태에서의 유량 변동 측정을 수행하는데 큰 역할을 할 수 있을 것이다.

  • PDF

수중격벽을 이용한 슬러지이송 (Sludge Transportation by the Submerged Barrier)

  • 박석균;강선홍
    • 상하수도학회지
    • /
    • 제20권6호
    • /
    • pp.857-865
    • /
    • 2006
  • The submerged barrier, employed in a reactor, divided a reactor into sludge settling zone and mixing zone according to flow type. In spite of mixing in the mixing zone, the lower part of sludge settling zone than the top of barrier was in a steady flow due to the barrier, which prevented the turbulent flow, produced from the mixing zone, from being diffused into the sludge settling zone. Therefore, the sludges in the mixing zone flowed backward over the barrier into the upper part of the sludge settling zone by turbulent flow and settled down in the sludge settling zone by the force of gravity. When barrier/water level ratio was 0.5, most sludges almost did not settle down in tile sludge settling zone because the sludges were directly affected by the turbulent flow, generated from mixer in the mixing zone. At 0.63 of barrier/water level ratio, sludge in the middle part of sludge settling zone rocked from side to side weakly. And sludge in the lower part became piled up on the bottom over this ratio. After 10minutes of sludge settling, the lower part of sludge settling zone was over 5000mg/L of sludge concentration although intial sludge concentration was 2300mg/L. By using the submerged barrier and the flow types, it could transfer sludge from this to that.