• Title/Summary/Keyword: Steady flow

Search Result 2,036, Processing Time 0.023 seconds

Analysis of the Characteristics of Water Quality Difference Occurring between High Tide and Low Tide in Masan Bay (만조와 간조시 마산만 수질의 농도차 발생 특성의 분석)

  • Yoo, Youngjin;Kim, Sung Jae
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.102-113
    • /
    • 2019
  • Slack-tide sampling was carried out at 6 stations at high and low tide for a tidal cycle during spring tide of the early summer (June) and summer (July, August) of 2016 to determine the difference of water quality according to tide in Masan Bay, Korea. The mixing regime of all the water quality components investigated was well explained through the correlation with SAL. In the early summer and summer, TURB, DSi and NNN which mainly flow into the bay from the streams and SS, COD, AMN and $H_2S$ which mainly indicate the internal sink and source materials have a property of conservative mixing and non-conservative mixing, respectively. The conservative mixing showed a good linear relationship of the water quality between high and low tide, and the non-conservative mixing showed a variation of different pattern each other. Factor analysis performed on the concentration difference data sets between high and low tide helped in identifying the principal latent variables for them. In early summer, multiple effects (tidal action, natural influx and internal sinks and sources etc.) acted in combination for the differences to be distributed evenly in four factors (VF1~4), since there were few allochthonous inputs as a low-water season. On the contrary, in summer, the parameters showing large concentration difference at ST-1 affected by stream water were concentrated in one factor (VF1) and clearly distinguished from the parameters affected by the internal sinks and sources. In fact, there is no estuary (bay) that always maintains steady state flow conditions. The mixing regime of an estuary might be changed at any time due to the change of flushing time, and furthermore the change of end-member conditions due to the internal sinks and sources makes the occurrence of concentration difference inevitable. Therefore, when investigating the water quality of the estuary, it is necessary to take a sampling method considering the tide to obtain average water quality data.

Development of A Material Flow Model for Predicting Nano-TiO2 Particles Removal Efficiency in a WWTP (하수처리장 내 나노 TiO2 입자 제거효율 예측을 위한 물질흐름모델 개발)

  • Ban, Min Jeong;Lee, Dong Hoon;Shin, Sangwook;Lee, Byung-Tae;Hwang, Yu Sik;Kim, Keugtae;Kang, Joo-Hyon
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • A wastewater treatment plant (WWTP) is a major gateway for the engineered nano-particles (ENPs) entering the water bodies. However existing studies have reported that many WWTPs exceed the No Observed Effective Concentration (NOEC) for ENPs in the effluent and thus they need to be designed or operated to more effectively control ENPs. Understanding and predicting ENPs behaviors in the unit and \the whole process of a WWTP should be the key first step to develop strategies for controlling ENPs using a WWTP. This study aims to provide a modeling tool for predicting behaviors and removal efficiencies of ENPs in a WWTP associated with process characteristics and major operating conditions. In the developed model, four unit processes for water treatment (primary clarifier, bioreactor, secondary clarifier, and tertiary treatment unit) were considered. Additionally the model simulates the sludge treatment system as a single process that integrates multiple unit processes including thickeners, digesters, and dewatering units. The simulated ENP was nano-sized TiO2, (nano-TiO2) assuming that its behavior in a WWTP is dominated by the attachment with suspendid solids (SS), while dissolution and transformation are insignificant. The attachment mechanism of nano-TiO2 to SS was incorporated into the model equations using the apparent solid-liquid partition coefficient (Kd) under the equilibrium assumption between solid and liquid phase, and a steady state condition of nano-TiO2 was assumed. Furthermore, an MS Excel-based user interface was developed to provide user-friendly environment for the nano-TiO2 removal efficiency calculations. Using the developed model, a preliminary simulation was conducted to examine how the solid retention time (SRT), a major operating variable affects the removal efficiency of nano-TiO2 particles in a WWTP.

Geophysical Evidence Indicating the Presence of Gas Hydrates in a Mud Volcano(MV420) in the Canadian Beaufort Sea (캐나다 보퍼트해 진흙화산(MV420) 내 가스하이드레이트 부존을 지시하는 지구물리학적 증거)

  • Yeonjin Choi;Young-Gyun Kim;Seung-Goo Kang;Young Keun Jin;Jong Kuk Hong;Wookeen Chung;Sung-Ryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.18-30
    • /
    • 2023
  • Submarine mud volcanos are topographic features that resemble volcanoes, and are formed due to eruptions of fluidized or gasified sediment material. They have gained attention as a source of subsurface heat, sediment, or hydrocarbons supplied to the surface. In the continental slope of the Canadian Beaufort Sea, mud volcano exists at various water depths. The MV420, is an active mud volcano erupting at a water depth of 420 meters, and it has been the subject of extensive study. The Korea Polar Research Institute(KOPRI) collected high-resolution seismic data and heat flow data around the caldera of the mud volcano. By analyzing the multi-channel seismic data, we confirmed the reverse-polarity reflector assumed by a gas hydrate-related bottom simulating reflector(BSR). To further elucidate the relationship between the BSR and gas hydrates, as well as the thermal structure of the mud volcano, a numerical geothermal model was developed based on the steady-state heat equation. Using this model, we estimated the base of the gas hydrate stability zone and found that the BSR depth estimated by multi-channel seismic data and the bottom of the gas hydrate stability zone were in good agreement., This suggests the presence of gas hydrates, and it was determined that the depth of the gas hydrate was likely up to 50 m, depending on the distance from the mud conduit. Thus, this depth estimate slightly differs from previous studies.

Monte-Carlo Simulations of Non-ergodic Solute Transport from Line Sources in Isotropic Mildly Heterogeneous Aquifers (불균질 등방 대수층 내 선형오염원으로부터 기원된 비에르고딕 용질 이동에 관한 몬테카를로 시뮬레이션)

  • Seo Byong-min
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.20-31
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a lion-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce tile simulation uncertainties. Ensemble averages of the second spatial moments of the plume and plume centroid variances were simulated with 1600 Monte Carlo runs for three variances of log K, ${\sigma}_Y^2=0.09,\;0.23$, and 0.46, and three dimensionless lengths of line plume sources normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are generally larger than the first order results. The first order theoretical results significantly underestimated the simulated dimensionless transverse moments for the aquifers of large ${\sigma}_Y^2$ and large dimensionless time. The ergodic condition for the second spatial moments is far from reaching in all cases simulated, and transport In transverse directions may reach ergodic condition much slower than that in longitudinal direction. The evolution of the contaminant transported in a heterogeneous aquifer is not affected by the shape of the initial plume but affected mainly by the degree of the heterogeneity and the size of the initial plume.

Changes in Infarct Size after Reperfusion with Time in a Reversible Cerebral Ischemic Model in Rats (백서의 가역성 뇌허혈 모형에서 재관류 시간에 따른 뇌경색 크기의 변화)

  • Jung, Byoung Woo;Choi, Byung-Yon;Cho, Soo-Ho;Kim, Oh-Lyong;Bae, Jang-Ho;Kim, Seong-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.9
    • /
    • pp.1171-1178
    • /
    • 2000
  • Objective : The purpose of the present study was to determine the appropriate time of clinical intervention by observing and analyzing the changes in the size of infarct, penumbra and cerebral edema and the extend of neurological deficit due to reperfusion damage according to time in a reversible cerebral ischemic model of reperfusing blood flow after inducing ischemia by maintaining middle cerebral artery occlusion for 2 hours(h) in rats. Methods : The rats were divided according to reperfusion time into control group(0 h reperfusion time) and experimental groups(0.5, 1, 2, 3, 4, 5, 6, 12, and 24 h of reperfusion time). Results : Changes in the size of infarction due to reperfusion damage were 0.93, 1.48 and 1.16% at 0.5, 1 and 2 h after reperfusion, respectively, and although a statistical significance was not present compared to 1.35% of the control group, damages increased drastically up to 6 h(6.64%), and the size increased were 6.65 and 6.78% at 12 and 24 h, respectively. Also there was no significant difference after 6 h up to 24 h in the size of infarction. In the areas where infarction occurred, reperfusion damage increased significantly with time in cortex than in subcortex. Accordingly, the size of penumbra area also showed a statistically significant decrease from 2 h up to 6 h after reperfusion, and 6 h after reperfusion, the area almost disappeared, becoming permanent infarction. Thus, reperfusion damage showed a significant increase from 2 h up to 6 h after reperfusion, and became steady thereafter. As for the mean ratio of the extend of cerebral edema, the control group and reperfusion 0.5 h group were 1.073 and 1.081, respectively ; up to 2 h thereafter, the ratio decreased to 1.01 but increased again with time ; and in reperfusion 12 h and reperfusion 24 h, the ratios were 1.070 and 1.075, respectively, showing similar size with that of control group. As for neurological deficit scores, the score of the control group was 2.67, that of reperfusion 2 h was 2, those of reperfusion 3 h and 6 h groups were 3.2 and 3.8, respectively, and those of reperfusion 12 h and 24 h groups were 4.2 and 4.6, respectively. Thus, as for the test results, the neurological deficit increased with time 2 h after reperfusion, and in reperfusion 12 and 24 h groups, almost all the symptoms appeared. Conclusion : As shown in these results, although the changes in the size of infarction due to reperfusion damage did not increase up to 2 h after reperfusion in the experimental groups compared to the control group, damage increased significantly thereafter up to 6 h, and the size remained about the same from 6 h to 24 h after reperfusion, becoming permanent infarction ; thus, the appropriate time of intervention according to the present study is at least 6 h before after maintaining reperfusion, including the time of cerebral artery occlusion.

  • PDF

Modeling and Intelligent Control for Activated Sludge Process (활성슬러지 공정을 위한 모델링과 지능제어의 적용)

  • Cheon, Seong-pyo;Kim, Bongchul;Kim, Sungshin;Kim, Chang-Won;Kim, Sanghyun;Woo, Hae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1905-1919
    • /
    • 2000
  • The main motivation of this research is to develop an intelligent control strategy for Activated Sludge Process (ASP). ASP is a complex and nonlinear dynamic system because of the characteristic of wastewater, the change in influent flow rate, weather conditions, and etc. The mathematical model of ASP also includes uncertainties which are ignored or not considered by process engineer or controller designer. The ASP is generally controlled by a PID controller that consists of fixed proportional, integral, and derivative gain values. The PID gains are adjusted by the expert who has much experience in the ASP. The ASP model based on $Matlab^{(R)}5.3/Simulink^{(R)}3.0$ is developed in this paper. The performance of the model is tested by IWA(International Water Association) and COST(European Cooperation in the field of Scientific and Technical Research) data that include steady-state results during 14 days. The advantage of the developed model is that the user can easily modify or change the controller by the help of the graphical user interface. The ASP model as a typical nonlinear system can be used to simulate and test the proposed controller for an educational purpose. Various control methods are applied to the ASP model and the control results are compared to apply the proposed intelligent control strategy to a real ASP. Three control methods are designed and tested: conventional PID controller, fuzzy logic control approach to modify setpoints, and fuzzy-PID control method. The proposed setpoints changer based on the fuzzy logic shows a better performance and robustness under disturbances. The objective function can be defined and included in the proposed control strategy to improve the effluent water quality and to reduce the operating cost in a real ASP.

  • PDF

A Hydrodynamic Modeling Study to Analyze the Water Plume and Mixing Pattern of the Lake Euiam (의암호 수체 흐름과 혼합 패턴에 관한 모델 연구)

  • Park, Seongwon;Lee, Hye Won;Lee, Yong Seok;Park, Seok Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.488-498
    • /
    • 2013
  • A three-dimensional hydrodynamic model was applied to the Lake Euiam. The lake has three inflows, of which Gongji Stream has the smallest flow rate and poorest water. The dam-storage volume, watershed area, lake shape and discharge type of the Chuncheon Dam and the Soyang Dam are different. Therefore, it is difficult to analyze the water plume and mixing pattern due to the difference of the two dams regarding the amount of outflow and water temperature. In this study, we analyzed the effects of different characteristics on temperature and conductivity using the model appropriate for the Lake Euiam. We selected an integrated system supporting 3-D time varying modeling (GEMSS) to represent large temporal and spatial variations in hydrodynamics and transport of the Lake Euiam. The model represents the water temperature and hydrodynamics in the lake reasonably well. We examined residence time and spreading patterns of the incoming flows in the lake based on the results of the validated model. The results of the water temperature and conductivity distribution indicated that characteristics of upstream dams greatly influence Lake Euiam. In this study, the three-dimensional time variable water quality model successfully simulated the temporal and spatial variations of the hydrodynamics in the Lake Euiam. The model may be used for efficient water quality management.

Characteristic Study of LNG Combustion in the mixture of $O_2/CO_2$ ($O_2/CO_2$ 혼합조건에 따른 LNG 연소특성해석)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.647-653
    • /
    • 2007
  • The ultimate objective of this study is to develop a reliable oxygen-enriched combustion techniques especially for the case of the flue gas recycling in order to reduce the $CO_2$ emissions from practical industrial boilers. To this end a systematic numerical investigation has been performed, as a first step, for the resolution of the combusting flame characteristics of lab-scale LNG combustor. One of the important parameters considered in this study is the level of flue gas recycling calculated in oxygen enriched environment. As a summary of flame characteristics, for the condition of 100% pure $O_2$ as oxidizer without any flue gas recycling, the flame appears as long and thin laminar-like shape with relatively high flame temperature. The feature of high peak of flame temperature is explained by the absence of dilution and heat loss effects due to the presence of $N_2$ inert gas. The same reasoning is also applicable to the laminarized thin flame one, which is attributed to the decrease of the turbulent mixing. These results are physically acceptable and consistent and further generally in good agreement with experimental results appeared in open literature. As the level of $CO_2$ recycling increases in the mixture of $O_2/CO_2$, the peak flame temperature moves near the burner region due to the enhanced turbulent mixing by the increased amount of flow rate of oxidizer stream. However, as might be expected, the flue gas temperature decreases due to presence of $CO_2$ gas together with the inherent feature of large specific heat of this gas. If the recycling ratio more than 80%, gas temperatures drop so significantly that a steady combustion flame can no longer sustain within the furnace. However, combustion in the condition of 30% $O_2/70% $ $CO_2$ can produce similar gas temperature profiles to those of conventional combustion in air oxidizer. An indepth analyses have been made for the change of flame characteristics in the aspect of turbulent intensity and heat balance.

Transport of Zn Ion under various pH Conditions in a Sandy Soil (사질토양에서의 pH조건에 따른 Zn의 이동특성)

  • Park, Min-Soo;Kim, Dong-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2000
  • Adsorption onto the surfaces of solid particles is a well known phenomenon that causes the retardation effect of heavy metals in soils. For adequate remediation of soil and groundwater contamination, it is important to investigate the mobility of heavy metals that largely depends on pH conditions in the soil water since adsorption of heavy metals is pH-dependent. In this study, we investigated the transport of Zn ion under various pH conditions in a sandy soil by conducting batch and column tests. The batch test was performed using the standard procedure of equilibrating fine fractions collected from the soil with eleven different initial $ZnCl_2$ concentrations, and analysis of Zn ion in the equilibrated solutions using ICP-AES. The column test consisted of monitoring the concentrations of soil solutions exiting the soil column with time known as a breakthrough curve (BTC). We injected respectively $ZnCl_2$ and KCl solutions with the concentration of 10 g/L as a tracer in a square pulse type under three different pH conditions (7.7, 5.8, 4.1) and monitored the flux concentration at the exit boundary using an EC meter and ICP-AES. The resident concentration was also monitored at the 10cm-depth by Time Domain Reflectometry (TDR). The results of batch test showed that ion exchange process between Zn and other cations (Ca, Mg) was predominant. The retardation coefficients obtained from adsorption isotherms (Linear, Freundlich, Langmuir) resulted in the various values ranging from 1.2 to 614.1. No retardation effect but ion exchange was found for the BTCs under all pH conditions. This can be explained by the absence of other cations to desorb Zn ion from soil exchange sites under the conditions of ETC experiment imposing blank water as leachate in steady-state flow. As pH decreased, the peak concentration of Zn increased due to the competition of Zn with hydrogen ions ($H^+$) and the concentrations of other cations decreased. The peak concentration of Zn was increased by 12.7 times as pH decreased from 7.7 to 4.1.

  • PDF

A Study on the Water Exchange Plan with Disaster Prevention Facilities in Masan Bay (마산만 재해방지시설을 이용한 해수교환 방안에 관한 연구)

  • Kim, Gweon-Su;Ryu, Ha-Sang;Kim, Kang-Min
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.637-645
    • /
    • 2013
  • Masan bay with a semi-enclosed waters has serious water quality problems due to the low flow and river pollution load from land, and shows the vulnerable locational characteristics to storm surge. We are seeking the way of both operating disaster prevention facilities and water quality improvement measures in the bay. That is, the water was exchanged using the head difference occurred by operating disaster prevention facilities. The location of disaster prevention facilities was assumed to be in the inlet of the bay, in the vicinity of Machang bridge, and in the vicinity of Dot island and the operation time was assumed to be early morning hours(01~05) considering the number of shipping passage and annual tide, and spring tide of the largest head difference. In addition, the experiment case of water exchange including the in-outflow feeder pipe was tested. According to the simulation results, water exchange rate in all experiments has shown a steady increase. Water exchange rate of the whole of Masan bay in the case of present is 38.62%. The water exchange rate of the inside of Masan bay compared with the inlet of bay, appeared to be very low. Thus, we judged that the characteristics of semi-enclosed waters were well reproduced. On the results of the experiment of disaster prevention facilities and in-outflow feeder pipe, the case of the operation of disaster prevention facilities, water exchage rate is high compared with the case of present. And, the higer the operating frequency, the more water exchange is appeared. The cases of water exchange prevention facilities through the in-outflow feeder pipe caused by the head difference, also showed the higest improvement of the water quality. Compared with the south of Machang bridge, the effect of water exchange was better in the inlet of Masan bay and Dot island. On the other hand, the inlet of Masan bay is higer than Dot island as for water exchange of the whole of Masan bay, but opposite, water change rate including Masan inside was higher in the case of Dot island.