• Title/Summary/Keyword: Steady and Transient Analysis

Search Result 382, Processing Time 0.024 seconds

Thermal Analysis of Vehicle Radiator (차량용 라디에이터의 열 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • This study analyzes the thermal stress at automotive radiators on steady and transient states. The maximum displacement is shown at the lower corner of upper tank with the value of 0.51mm. The displacement becomes smaller at the center of radiator and it becomes larger at this edge. The maximum thermal stress with the value of 62 MPa is shown at the contact between upper tank and cooling plate. Thermal maximum stress with the transient state at the elapsed time of 10 second is lower than that at steady state as much as 0.7%.

  • PDF

A Study on the Analysis of Lightning Damage Impact in Domestic Offshore Wind Farm (국내 해상풍력발전단지 낙뢰피해 영향 분석에 관한 연구)

  • Seo, Jin-Gyu;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.247-252
    • /
    • 2016
  • The latest offshore wind turbines are easily exposed to lightning strikes because they are designed with longer blades and taller height to satisfy the growing capacity demands. The generation facilities and elements of the offshore wind farm are more vulnerable to lightning damage because of more severe, unpredictable weather conditions. Therefore, this paper presents the analysis of measure for lightning overvoltage mitigation in offshore wind farm planned in South Korea southwest seashore. The sensitivity analysis includes the steady state and transient state characteristics of offshore wind farm and proposes the countermeasure for mitigation of transient overvoltage by considering earth resistivity of the offshore environment.

Effect of Groundwater Flow on the Behavior of Circular Vertical Shaft (지하수 유동을 고려한 원형수직구 거동분석)

  • Park, Heejin;Park, Jongjeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.29-39
    • /
    • 2022
  • This study investigates the behavior of a circular vertical shaft wall in the absence and presence of a groundwater table. The effects of wall deflection, backfill settlement, and earth pressure distribution around the circular vertical shaft caused by sequential excavations were quantified. The vertical shaft was numerically simulated for different excavation depths of the bearing layer (weathered soil, weathered rock, soft rock) and transient and steady-state flows in the absence of a groundwater table. The backfill settlements and influential area were much larger under transient flow conditions than in steady-state flow. On the contrary, the horizontal wall deflection was much larger in steady state than in the transient state. Moreover, less settlement was induced as the excavation depth increased from weathered soil to weathered rock to the soft rock layer. Finally, the horizontal stresses under steady- and transient-state flow conditions were found to exceed Rankine's earth pressure. This effect was stronger in the deeper rock layers than in the shallow soil layers.

Design and Performance Analysis of a Noncoherent Code Tracking Loop for 3GPP MODEM (3GPP 모뎀용 동기 추적회로의 설계 및 성능 분석)

  • 양연실;박형래
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.983-990
    • /
    • 2003
  • In this paper, a noncoherent code tracking loop is designed for 3GPP MODEM and its performance is analyzed in terms of steady-state jitter variance and transient response characteristics. An analytical closed-form formula for steady-state jitter variance is Int derived for AWGN environments as a general function of a pulse-shaping filter, timing offset, signal-to-interference ratio, and loop bandwidth, together with the analysis on the transient response characteristic of a tracking loop. Based on the analysis, the code tracking loop with variable loop bandwidth that is efficient for full digital H/W implementation is designed and its performance is compared with that of the code tracking loop with fixed loop bandwidth, along with the verification by computer simulations.

Transient Conjugate Heat Transfer of Turbine Rotor-Stator System

  • Okita, Yoji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.831-838
    • /
    • 2004
  • A fluid-solid conjugate solver has been newly developed and applied to an actual engine disk system. Most of the currently available conjugate solvers lack the special thermal modeling for turbomachinery disk system applications. In the present new code, these special models are implemented to expand the applicability of the conjugate method and to reduce the required computational resources. Most of the conjugate analysis work so far are limited to the axisymmetric framework. However, the actual disk system includes several non-axisymmetric components which inevitably affect the local heat transfer phenomena. Also the previous work devoted to this area usually concentrate their efforts on the steady-state thermal field, although the one in the transient condition is more critical to the engine components. This paper presents full 3D conjugate analysis of a single stage high pressure turbine rotor-stator disk system to assess the three-dimensional effects (Fig. 1). The analysis is carried out not only in the steady-state but also in the engine accelerating transient condition. The predicted temperatures shows good agreement with measured data.

  • PDF

A FLUID TRANSIENT ANALYSIS ON THE PIPE NETWORK OF BIPROPELLANT PROPULSION SYSTEM WITH AN UNSTEADY FRICTION (이원추진제 추진시스템의 배관망에 대한 비정상 마찰을 고려한 과도기유체 해석)

  • Chae, Jong-Won;Han, Cho-Young;Kim, Jung-Hoon;Jun, Hyoung-Yoll
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.487-490
    • /
    • 2010
  • A fluid transient analysis on the pipe network of bipropellant propulsion system is conducted through numerical parametric studies in which unsteady friction results are compared with quasi-steady friction results and also show the pressure drop results during the liquid apogee engine firing. The fluid transient analysis program has verified through comparing with the original Zielke model, the full and recursive convolution model and quasi-steady model as a reference. And the pressure drop program also has verified through comparing with results of the well-known program, EPANET2. The bipropellant propulsion system has two different fluids as fuel and oxidizer, and mostly they are hypergolic combination so that the valve opening and closing of the thrusters, that cause the pressure waves, shall take place simultaneously to get proper performance. The different physical properties of the fuel and oxidizer result in the different responsive to the same valve opening and closing. The response results may be helpful to know the characteristics of the bipropellant propulsion system and design it.

  • PDF

Numerical analysis of steady and transient processes in a directional solidification system

  • Lin, Ting-Kang;Lin, Chung-Hao;Chen, Ching-Yao
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.341-353
    • /
    • 2016
  • Manufactures of multi-crystalline silicon ingots by means of the directional solidification system (DSS) is important to the solar photovoltaic (PV) cell industry. The quality of the ingots, including the grain size and morphology, is highly related to the shape of the crystal-melt interface during the crystal growth process. We performed numerical simulations to analyze the thermo-fluid field and the shape of the crystal-melt interface both for steady conditions and transient processes. The steady simulations are first validated and then applied to improve the hot zone design in the furnace. The numerical results reveal that, an additional guiding plate weakens the strength of vortex and improves the desired profile of the crystal-melt interface. Based on the steady solutions at an early stage, detailed transient processes of crystal growth can be simulated. Accuracy of the results is supported by comparing the evolutions of crystal heights with the experimental measurements. The excellent agreements demonstrate the applicability of the present numerical methods in simulating a practical and complex system of directional solidification system.

Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model-II: Applications by Coupling with COREDAX

  • Lee, Yoonhee;Cho, Bumhee;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.660-672
    • /
    • 2016
  • In Part I of this paper, the two-temperature homogenized model for the fully ceramic microencapsulated fuel, in which tristructural isotropic particles are randomly dispersed in a fine lattice stochastic structure, was discussed. In this model, the fuel-kernel and silicon carbide matrix temperatures are distinguished. Moreover, the obtained temperature profiles are more realistic than those obtained using other models. Using the temperature-dependent thermal conductivities of uranium nitride and the silicon carbide matrix, temperature-dependent homogenized parameters were obtained. In Part II of the paper, coupled with the COREDAX code, a reactor core loaded by fully ceramic microencapsulated fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure is analyzed via a two-temperature homogenized model at steady and transient states. The results are compared with those from harmonic- and volumetric-average thermal conductivity models; i.e., we compare $k_{eff}$ eigenvalues, power distributions, and temperature profiles in the hottest single channel at a steady state. At transient states, we compare total power, average energy deposition, and maximum temperatures in the hottest single channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized model for Doppler temperature feedback lead to significant differences.

Static and transient analyses of Advanced Power Reactor 1400 (APR1400) initial core using open-source nodal core simulator KOMODO

  • Alnaqbi, Jwaher;Hartanto, Donny;Alnuaimi, Reem;Imron, Muhammad;Gillette, Victor
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.764-769
    • /
    • 2022
  • The United Arab Emirates is currently building and operating four units of the APR-1400 developed by a South Korean vendor, Korea Electric Power Corporation (KEPCO). This paper attempts to perform APR-1400 reactor core analysis by using the well-known two-step method. The two-step method was applied to the APR-1400 first cycle using the open-source nodal diffusion code, KOMODO. In this study, the group constants were generated using CASMO-4 fuel transport lattice code. The simulation was performed in Hot Zero Power (HZP) at steady-state and transient conditions. Some typical parameters necessary for the Nuclear Design Report (NDR) were evaluated in this paper, such as effective neutron multiplication factor, control rod worth, and critical boron concentration for steady-state analysis. Other parameters such as reactivity insertion, power, and fuel temperature changes during the Reactivity Insertion Accident (RIA) simulation were evaluated as well. The results from KOMODO were verified using PARCS and SIMULATE-3 nodal core simulators. It was found that KOMODO gives an excellent agreement.

Steady-State and Transient Response Analysis of DSSC Based on Electron Diffusion Coefficient and Chemical Capacitance

  • J. C. Gallegos;J. Manriquez;R. Rodriguez;S. Vargas;D. Rangel
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.276-290
    • /
    • 2024
  • A study of the transition from transitory state to steady state in DSSCs based on natural dyes is presented; cochineal was used as dye and Li+, Na+, and K+ were the ions added to the electrolyte. The photocurrent profiles were obtained as a function of time. Several DSSCs were prepared with different cations and their role and the transitory-to-steady transition was determined. A novel hybrid charge carrier source model based on the Heaviside function H(t) and the Lambert-Beer law, was developed and applied to analysis of the transient response of the output photocurrent. Additionally, the maximum effective light absorption coefficient α and the electronic extraction rate κ for each ion were determined: ${\alpha}_{Li^+,Na^+,K^+}\,=\,(0.486,\,0.00085,\,0.1126)\,cm^{-1}$, and also the electronic extraction rate ${\kappa}^{Li^+,Na^+,K^+}_{ext.}\,=\,(1410,\,19.07,\,19.69)\,cm\,s^{-1}$. The impedance model using Fick's second law was developed for carrier recombination to characterize the photocurrent.