• Title/Summary/Keyword: Steady Wave

Search Result 275, Processing Time 0.024 seconds

A Study on the Characteristics of Automatic Flatness Control System for Stell Sheet (강판의 자동 형상제어 장치의 특성에 관한 연구)

  • 김순경;전연찬;김중완;김문경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.541-545
    • /
    • 1996
  • In this paper, The performance and functions of automatic flatness control system installed on the 4 hi-reversing mill and has been investigated under actualconditions. A new automatic flatness control system incorporates a measuring roll for measurement and correction calculations, hydraulic roll benders, selective roll cooling, and a programmable controller for interface and data logging. The test results are as following. The more the exit steel strip thickness is thick, the smaller the I value, and the more it is thin, the larger the I value. And, a complex distribution of strip tension was controlled, for example, not only a quarter buckle but also a simple center wave and edge wave. Because the tension deviation is larger at acceleration speed and deceleration speed than steady speed, so automatic flatness control system of contact type is better to adopt over 450 m/min, automatic flatness control system reduces rapidly large flatness deviation. The maximum I value of strip has been decreased to 13 I, and defects caused by poor flatness have been drastically decreased. And coolant temperature for work roll cooling system on the automatic flatness control system is better to adopt about 50-55 .deg. C.

  • PDF

Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

  • Park, Hyeon K.
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2017
  • The role of electromagnetic (EM) waves in magnetic fusion plasma-ranging from radio frequency (RF) to microwaves-has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV=10000 K) that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs) provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

Rapid Cooling Mechanism Utilizing Acoustic Streaming Generated by Ultrasonic Vibrations (초음파 진동에 의해 발생된 음향유동을 활용한 급속냉각 메카니즘)

  • Loh, Byoung-Gook;Kwon, Ki-Jung;Lee, Dong-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1057-1066
    • /
    • 2006
  • Acoustic streaming Induced by longitudinal vibration at 30 kHz is visualized for a test fluid flow between the stationary glass plate and ultrasonic vibrating surface with particle imaging velocimetry (PIV) To measure an increase in the velocity of air flow due to acoustic streaming, the velocity of air flow in a gap between the heat source and ultrasonic vibrator is obtained quantitatively using PIV. The ultrasonic wave propagating into air in the gap generates steady-state secondary vortex called acoustic streaming which enhances convective cooling of the stationary heat source. Heat transfer through air in the gap is represented by experimental convective heat transfer coefficient with respect to the gap. Theoretical analysis shows that gaps for maximum heat transfer enhancement are the multiple of half wavelength. Optimal gaps for the actual design are experimentally found to be half wavelength and one wavelength. A drastic temperature variation exists for the local axial direction of the vibrator according to the measurement of the temperature distribution in the gap. The acoustic streaming velocity of the test fluid in the gap is at maximum when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which are specifically 6 mm and 12 mm.

A Numerical Study on the Supersonic Separation of Air-launching Rocket from the Mother Plane (초음속 공중발사 로켓의 모선분리 현상에 관한 수치적 연구)

  • Ji, Young-Moo;Kim, Young-Shin;Lee, Jae-Woo;Park, Jun-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.18-25
    • /
    • 2005
  • This paper describes a supersonic separation of air-launching rocket from the mother plane. Three dimensional Euler equations were numerically solved to analyze steady/unsteady state fluid flows. The results of simulation clearly demonstrate effect of shock-expansion wave interaction between the rocket and the mother plane. Moreover, important influential factors at separating stage of the rocket were extracted with a comprehensive analysis. Finally, from the consideration of supersonic-separation, a guideline to safety-separation is given to the design of supersonic air-launching rocket.

Lagrangian Chaos and Dispersion of Passive Particles on the Ripple Bed (해저 파문에서의 입자의 라그란지적 혼돈 및 확산)

  • 김현민;서용권
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-24
    • /
    • 1993
  • The dispersion in the oscillatory flow generated by gravitational waves above the spatially periodic repples is studied. The steady parts of equations describing the orbit of the passive particle in a two dimensional field are assumed to be simply trigonometric functions. From the view point of nonlinear dynamics, the motion of the particle is chaotic under externally time-periodic perturbations which come from the wave motion. Two cases considered here are; (i) shallow water, and (ii) deep water approximation.

  • PDF

Evaluation on the Effect of Whole Body Vibration on EEG Frequency-Fluctuation (인체진동이 뇌파변동리듬에 미치는 영향평가)

  • Min, Byung-Chan;Kim, Hyoung-Wook;Kim, Ji-Kwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.4
    • /
    • pp.71-77
    • /
    • 2007
  • In this study, reactions of central nervous systems working against different conditions of forced frequency and acceleration were measured and analyzed. The experiment are conducted with health men. The steady vibration conditions of forced frequency (0.315m/s2-1.0Hz, 0.315m/s2-10Hz and 10Hz-1.0m/s2) are used and the waves of EEG (Electroencephalogram) are measured. As a result, this paper shows that the ${\alpha}-wave$ of frontal lobe transfers from low to high frequency band under the vibration environment. Additionally, the average frequency of ${\alpha}-wave$ is higher under the vibration than under non-vibration environment. In the case of forced frequency of 1.0Hz-0.315m/s2, the feeling with the vibration are nearly same compared with the non-vibration condition. But in the case of 10Hz-1.0m/s2, uncomfortable feeling increased compared with the non-vibration condition. This study also shows the relationship between fluctuation slop and feeling. From this study, it is found that the effect of vibration on human depends on acceleration characteristics. Highly accelerating vibration is more harmful to human.

In vitro, Percutaneous absorption for Rat about cysteine (In vitro에서 시스테인에 대한 흰쥐의 경피 흡수)

  • Jung, Duck-Chae;Oh, Eun-Ha;Kuk, Won-Kwen
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • Chemicals for cosmetics, including skin, the skin absorbs some of the research in the field of science or pharmacy recently, about the environment and the health of the heightened interest in skin absorption, and many other human attributes and absorption evaluation studies are underway in various areas. In this study, The effects of commercial permanent wave products to skin which are composed with cysteine and bases using rat. Results are as follows; the content of penetration 4 hours later with steady state and no significant changeable after 20 hours later. In cysteine groups lag time and permeability coefficient of young skin is 3.32hr and $0.102{\mu}g/cm^2{\cdot}hr$, lag time and permeability coefficient of old skin is 4.04hr and $0.106{\mu}g/cm^2{\cdot}hr$. In conclusion of study lag time and permeability coefficient in old skin and wounded skin are faster than healthy skin. We notified that fine rinkle and rash of skin were changeable in the case of treating with permanent wave drugs than normal skin.

Structural and Layout Design Optimization of Ecosystem Control Structures(1) -Characteristics of Mooring Force and Motion Control of the Longline Type Scallop Culturing Facility- (생태계 제어 시설물의 설계 및 배치 최적화(1) -연승식 양식시설의 계류력 특성 및 동요저감에 관한 연구-)

  • RYU Cheong-Ro;KIM Hyeon-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.35-48
    • /
    • 1995
  • To develop the optimal design method for the longline type scallop culturing facilities in the open sea numerical calculations and hydraulic model experiments are carried out for the stability and function optimization. Using the results for the motion and tension of the facilities, stable design concepts and effects of motion control system by vertical anchor and resistance discs art discussed. The results of this study that can be applied to the design are as follows: 1) Total external forces by design wave $(H_{1/3}\;=\;6,7\;m,\;T_{1/3}\;=\;12sec)$ at the coastal waters of Jumunjin for unit facility (one main line) are estimated to 5-20 tons, and required anchor weights are 10-40 tons in the case of 2-point mooring system. Though the present facilities are stable to steady currents, but is unstable to the extreme wave condition of return period of 10 years. 2) The dimensions and depth of array systems must be designed considering the ecological environments as well as the physical characteristics including the mooring and holding forces that are proportional to the length and relative depth of main line to wave length, and the number of buoys and nets. 3) Oscillation of the facility is influenced by water particle motion and the weight of hanging net, and is excited at both edge, especially at the lee side. To reduce the motion of the nets, the vertical anchoring system and the resistence disc method are recommended by the experimental results, 4) The damage of rope near the anchor by abrasion should be prevented using the ring-type connection parts or anchor chains.

  • PDF

Investigation and Theoretical Analysis of a Fire Accident Caused by Smoldering Combustion (Smoldering 연소로 인한 화재사고 조사보고 소개 및 이론적 해석)

  • 김연승;변영철;황정호
    • Fire Science and Engineering
    • /
    • v.13 no.3
    • /
    • pp.3-17
    • /
    • 1999
  • Smoldering is a non-flaming combustion mode, characterized by thermal degradation and c charring of the virgin material, evolution of smoke and emission of visible glow. A big fire may @ occur even in a confined environment having a limited amount of oxygen, due to smoldering c combustion through a porous solid material. This paper presents a theoretical analysis on the effect of smoldering combustion on fire occurrence based on a report about fire investigation of a real f fire accident. It is assumed that the propagation of the smolder wave is one-dimensional, d downward, opposing an upward forced flow and steady in a frame of reference moving with the s smolder wave. Smoldering combustion is modeled by a one-step reaction mechanism, without c considering pyrolysis. It is found that dominant parameters controlling smoldering combustion i include mass flux of oxidizer entering the reaction zone and void fraction of solid fuel. It is also found that the mechanism of transition to flaming is critically influenced by these two parameters.

  • PDF

Current Effect on the Motion and Drift Force of Cylinders Floating in Waves (주상체(柱狀體)의 운동(運動) 및 표류력(漂流力)에 미치는 해류(海流)의 영향(影響))

  • Sei-Chang,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.25-34
    • /
    • 1986
  • A two-dimensional linear method has been developed for the motion and the second-order steady force arising from the hydrodynamic coupling between waves and currents in the presence of a body of arbitrary shape. Interaction between the incident wave and current in the absence of the body lies in the realm beyond our interest. A Fredholm integral equation of the second kind is employed in association with the Haskind's potential for a steadily moving source of pulsating strength located in or below the free surface. The numerical calculations at the preliminary stage showed a significant fluctuation of the hydrodynamic forces on the surface-piercing body. The problem is approximately solved by using the asymptotic Green function for $U^2{\rightarrow}0$. The original Green function, however, is applied for the fully submerged body. Numerical calculations are made for a submerged and for a half-immersed circular cylinder and extensively for the mid-ship section of a Lewis-form. Some of the results are compared with other analytical results without any available experimental data. The current has strong influence on roll motion near resonance. When the current opposes the waves, the roll response are generally negligible in the low frequency region. The current has strong influence on roll motion near resonance. When the current opposes the wave, the roll response decreases. When the current and wave come from the same direction, the roll response increases significantly, as the current speed increases. The mean drift forces and moment on the submerged body are more affected by current than those on the semi-immersed circular cylinder or on the ship-like section in the encounter frequency domain.

  • PDF