• 제목/요약/키워드: Steady State cycle

검색결과 185건 처리시간 0.022초

Prediction of chloride diffusion coefficient of concrete under flexural cyclic load

  • Tran, Van Mien;Stitmannaithum, Boonchai;Nawa, Toyoharu
    • Computers and Concrete
    • /
    • 제8권3호
    • /
    • pp.343-355
    • /
    • 2011
  • This paper presented the model to predict the chloride diffusion coefficient in tension zone of plain concrete under flexural cyclic load. The fictitious crack based analytical model was used together with the stress degradation law in cracked zone to predict crack growth of plain concrete beams under flexural cyclic load. Then, under cyclic load, the chloride diffusion, in the steady state and one dimensional regime, through the tension zone of the plain concrete beam, in which microcracks were formed by a large number of cycles, was simulated with assumptions of continuously straight crack and uniform-size crack. The numerical analysis in terms of the chloride diffusion coefficient, $D_{tot}$, normalized $D_{tot}$, crack width and crack length was issued as a function of the load cycle, N, and load level, SR. The nonlinear model as regarding with the chloride diffusion coefficient in tension zone and the load level was proposed. According to this model, the chloride diffusion increases with increasing load level. The predictions using model fit well with experimental data when we adopted suitable crack density and tortuosity parameter.

Evaluation of AF type cyclic plasticity models in ratcheting simulation of pressurized elbow pipes under reversed bending

  • Chen, Xiaohui;Gao, Bingjun;Chen, Xu
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.703-753
    • /
    • 2016
  • The ratcheting behavior was studied experimentally for Z2CND18.12N elbow piping under cyclic bending and steady internal pressure. Dozens of cyclic plasticity models for structural ratcheting responses simulations were used in the paper. The four models, namely, Bilinear (BKH), Multilinear (MKIN/KINH), Chaboche (CH3), were already available in the ANSYS finite element package. Advanced cyclic plasticity models, such as, modified Chaboche (CH4), Ohno-Wang, modified Ohno-Wang, Abdel Karim-Ohno and modified Abdel Karim-Ohno, were implemented into ANSYS for simulating the experimental responses. Results from the experimental and simulation studies were presented in order to demonstrate the state of structural ratcheting response simulation by these models. None of the models evaluated perform satisfactorily in simulating circumferential strain ratcheting response. Further, improvement in cyclic plasticity modeling and incorporation of material and structural features, like time-dependent, temperature-dependent, non-proportional, dynamic strain aging, residual stresses and anisotropy of materials in the analysis would be essential for advancement of low-cycle fatigue simulations of structures.

An electric conductive-probe technique for measuring the liquid fuel layer in the intake manifold

  • Kajitani, S.;Sawa, N.;Rhee, K.T.;Hayashi, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1184-1189
    • /
    • 1990
  • In order to investigate liquid fuel filming over the intake manifold wall, an electrode-type probe has been developed by lines of authors and this probe was employed in a single cylinder two and four-stroke cycle engine and in a four cylinder four-stroke engine operated by neat methanol fuel. The performance of the probe was dependent upon several parameters including the liquid fuel layer thickness, temperature, additive in the fuel, and electric power source (i.e., AC and voltage level) and was independent of other variables such as direction of liquid flow with respect to the probe arrangement. Several new findings from this study may be in order. The flow velocity of the fuel layer in the intake manifold of engine was about (if the air velocity in the steady state operation, the layer thickness of liquid fuel varied in both the circumferential and longitydinal directions. In the transient operation of the engine, the temporal variation of fuel thickness was determined, which clearly suggests that there was difference between fuel/air ratio in the intake manifold and that in the cylinder. The variation was greatly affected by the engine speed, fuel/air ratio and throttle opening. And the variation was also very significant from cylinder to cylinder and it was particularly strong different engine speeds and throttle opening.

  • PDF

Analysis and Application of Repetitive Control Scheme for Three-Phase Active Power Filter with Frequency Adaptive Capability

  • Sun, Biaoguang;Xie, Yunxiang;Ma, Hui;Cheng, Li
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.618-628
    • /
    • 2016
  • Active power filter (APF) has been proved as a flexible solution for compensating the harmonic distortion caused by nonlinear loads in power distribution power systems. Digital repetitive control can achieve zero steady-state error tracking of any periodic signal while the sampling points within one repetitive cycle must be a known integer. However, the compensation performance of the APF would be degradation when the grid frequency varies. In this paper, an improved repetitive control scheme with frequency adaptive capability is presented to track any periodic signal with variable grid frequency, where the variable delay items caused by time-varying grid frequency are approximated with Pade approximants. Additionally, the stability criterion of proposed repetitive control scheme is given. A three-phase shunt APF experimental platform with proposed repetitive control scheme is built in our laboratory. Simulation and experimental results demonstrate the effectiveness of the proposed repetitive control scheme.

Two Vector Based Direct Power Control of AC/DC Grid Connected Converters Using a Constant Switching Frequency

  • Mehdi, Adel;Reama, Abdellatif;Benalla, Hocine
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1363-1371
    • /
    • 2017
  • In this paper, an improved Direct Power Control (DPC) algorithm is presented for grid connected three phase PWM rectifiers. The new DPC approach is based on two main tasks. First the optimization of the look-up table, which is well-known in conventional DPC, is outlined for selecting the optimum converter output voltage vectors. Secondly a very simple and effective method is used to directly calculate their duty cycles from the power errors. Therefore, the measured active and reactive powers are made to track their references using hysteresis controllers. Then two vectors are selected and applied during one control cycle to minimize both the active and reactive power ripples. The main advantages of this method are that there is no need of linear current controllers, coordinates transformations or modulators. In addition, the control strategy is able to operate at constant switching frequencies to ease the design of the power converter and the AC harmonic filter. The control exhibits a good steady state performance and improves the dynamic response without any overshoot in the line current. Theoretical principles of the proposed method are discussed. Both simulation and experimental results are presented to verify the performance and effectiveness of this control scheme.

디이젤기관의 방열에 관한 연구 (A study on the heat dissipation of diesel engine)

  • 이창식
    • 오토저널
    • /
    • 제2권1호
    • /
    • pp.39-50
    • /
    • 1980
  • This paper presents the variations obtained in heat flow rate and engine performance of a four-stroke cycle Diesel engine when there were changes in the temperature of cooling water, compression ratio, injection timing of fuel, and other factors. Heat dissipation of engine cylinder was calculated by the heat transfer coefficient of Nusselt's empirical equation and the analysis of distribution of temperature in cylinder barrel was obtained by the finite element method of two-dimensional steady state heat conduction. In this experiment, the out side temperature of cylinder liner was measured by the data logger, and the temperature distribution of liner was computed by the analysis of triangular finite element model under the assumption due to surface heat flux of cylinder inner surface. The results obtained by this study are as follows. Under the given operating condition, the temperature distribution of cylinder liner by using finite element method shows that the mean temperature of barrel is in accordance with the experimental results of Eichelberg and temperature difference is lower than 4.23.deg. C. The heat dissipation of engine decrease in accordance with the decrease of piston mean velocity, compression ratio, and the increase of coolant temperature. Influence on the delay of injection timing of fuel brings about the decrease of heat rejection over the cylinder at constant test conditions.

  • PDF

액-가스 열교환기를 이용한 R170(에탄)용 냉동시스템의 성능 특성 (Performance Characteristics of Refrigerant R170(Ethane) Refrigeration System Using Liquid-gas Heat Exchanger)

  • 구학근
    • 동력기계공학회지
    • /
    • 제20권5호
    • /
    • pp.78-85
    • /
    • 2016
  • This paper considers the influence of internal heat exchangers to the efficiency of a refrigerating system using R170. These liquid-gas heat exchangers(internal or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as the mass flowrate of R170, inner diameter tube and length of internal heat exchanger, to optimal dimensions of the heat exchanger is also analyzed in the paper. The main results were summarized as follows : the mass flowrate of R170, inner diameter tube and length of internal heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative Capacity Index) of this system. Exception for the effect of inner diameter, the RCI of R170 with respect to refrigerant mass flowrate, the length and effectiveness of internal heat exchanger is about 2.1~3.3% higher than that of R13 at the same experimental conditions. With a thorough grasp of these effect, it is necessary to design the R170 compression refrigeration cycle using internal heat exchanger.

A Non-isolated High Step-up DC/DC Converter with Low EMI and Voltage Stress for Renewable Energy Applications

  • Baharlou, Solmaz;Yazdani, Mohammad Rouhollah
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1187-1194
    • /
    • 2017
  • In this paper, a high step-up DC-DC PWM converter with continuous input current and low voltage stress is presented for renewable energy application. The proposed converter is composed of a boost converter integrated with an auxiliary step-up circuit. The auxiliary circuit uses an additional coupled inductor and a balancing capacitor with voltage doubler and switching capacitor technique to achieve high step-up voltage gain with an appropriate switch duty cycle. The switched capacitors are charged in parallel and discharged in series by the coupled inductor, stacking on the output capacitor. In the proposed converter, the voltage stress on the main switch is clamped, so a low voltage switch with low ON resistance can be used to reduce the conduction loss which results in the efficiency improvement. A detailed discussion on the operating principle and steady-state analyses are presented in the paper. To justify the theoretical analysis, experimental results of a 200W 40/400V prototype is presented. In addition, the conducted electromagnetic emissions are measured which shows a good EMC performance.

Analysis and Implementation of a New Single Switch, High Voltage Gain DC-DC Converter with a Wide CCM Operation Range and Reduced Components Voltage Stress

  • Honarjoo, Babak;Madani, Seyed M.;Niroomand, Mehdi;Adib, Ehsan
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.11-22
    • /
    • 2018
  • This paper presents a single switch, high step-up, non-isolated dc-dc converter suitable for renewable energy applications. The proposed converter is composed of a coupled inductor, a passive clamp circuit, a switched capacitor and voltage lift circuits. The passive clamp recovers the leakage inductance energy of the coupled inductor and limits the voltage spike on the switch. The configuration of the passive clamp and switched capacitor circuit increases the voltage gain. A wide continuous conduction mode (CCM) operation range, a low turn ratio for the coupled inductor, low voltage stress on the switch, switch turn on under almost zero current switching (ZCS), low voltage stress on the diodes, leakage inductance energy recovery, high efficiency and a high voltage gain without a large duty cycle are the benefits of this converter. The steady state operation of the converter in the continuous conduction mode (CCM) and discontinuous conduction mode (DCM) is discussed and analyzed. A 200W prototype converter with a 28V input and a 380V output voltage is implemented and tested to verify the theoretical analysis.

동적 모사를 이용한 천연가스 액화 공정에서 혼합냉매 공정 제어 연구 (A Study of Mixed Refrigerant Process Control in Liquefied Natural Gas Process using Dynamic Simulation)

  • 이재용;박찬국
    • 한국가스학회지
    • /
    • 제19권6호
    • /
    • pp.99-104
    • /
    • 2015
  • 천연가스의 이송을 위해 현재까지 가장 효율적인 방법은 액화를 통한 운반이다. 천연가스를 액화하기 위해서는 $-160^{\circ}C$이하로 냉각시켜야 하는데, 그 방법에는 여러 가지가 있다. 본 논문에서는 가장 대표적인 액화 공정인 C3MR 공정에 대한 제어 방법에 대해 연구하였다. 천연가스 액화 공정의 제어는 천연가스 품질을 유지할 수 있는 도구이며 안정된 운전을 보장하는 수단이다. C3MR 공정을 분석하고 제어 밸브에 대한 제어 변수를 선택하고 제어 변수의 계단 응답 결과를 통해 혼합냉매의 제어 구조를 도출 하였다. 도출된 제어 결과를 동적 모사를 통해서 임의로 외란을 주어 정상상태를 유지하는 결과를 확인 하였다.