• Title/Summary/Keyword: Steady State Performance

Search Result 1,426, Processing Time 0.035 seconds

The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms (최적 퍼지 직렬형 제어기 설계: Type-2 퍼지 제어기 및 공정경쟁기반 유전자알고리즘을 중심으로)

  • Kim, Wook-Dong;Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.972-980
    • /
    • 2010
  • In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

Lubrication Effect of Journal Bearing according to its Eccentricity and Attitude Angle (베어링 편심도와 자세각에 따른 저어널 베어링의 윤활효과)

  • Kim, Jong-Do;Wang, Yi-Jun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.88-95
    • /
    • 2015
  • The thickness of adsorbed molecular layers is the most critical factor in studying thin-film lubrication, and it is the most essential parameter that distinguishes thin-film from thick-film lubrication analysis. The thin film between the shaft and bearing surface within a very narrow gap was considered. The general Reynolds equation has been derived for calculating thin-film lubrication parameters affecting the performance of the circular journal bearing. Investigation of the load-carrying capacity and pressure distribution for the journal bearing considering the adsorbed layer thickness has been carried out. A Reynolds equation appropriate for the journal bearing is used in this paper for the analysis, and it is discussed using the finite difference method of the central difference scheme. The parameters, such as eccentricity and attitude angle, are used for discussing the load-carrying capacity of the journal bearing. The results reported in this paper should be applied to analysis of the journal bearing with different lubrication factors. The steady-state analysis of the journal bearing is conducted using the Reynolds model under thin-film lubrication conditions. For a journal bearing, several parameters, such as a pressure, load capacity, and pressure components of the bearing can be obtained, and these results can be stored in a sequential data file for later analysis. Finally, their distribution can be displayed and analyzed easily by using the MATLAB GUI technique. The load-carrying capability of the journal bearing is observed for the specified operating conditions. This work could be helpful for the understanding and research of the mechanism of thin-film lubrication.

A Study on the Heat Transfer Performance of an Energy-Nose Section in a Household Refrigerator-Freezer (가정용 냉장고의 에너지 노즈부 열전달 특성에 관한 연구)

  • Lee, Moo-Yeon;Lee, Dong-Yeon;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.574-580
    • /
    • 2007
  • The objective of this article is to present an analysis of all heat transfer paths through the energy nose under closed door conditions when refrigeration system of household refrigerator-freezer is operating on. Both experimental and numerical methods are suggested as a means of determining the overall energy nose load amount as well as the load due to each pathway such as mullion section and F and R sides of the household refrigerator-freezer. In other words, all loads determined in this article are just energy nose and not the loads seen by the refrigeration system. We suggest good ideas for improving the heat transfer losses such as conduction and convection through the energy nose. As we can be known from the experimental test results, it is effective to prevent the heat loss of a mullion section. And energy efficiency is also decreased approximately 6% compared to that of a baseline sample test result. As we can be known from the Ansys 8.1 analysis, it is shown the steady state temperature distribution in figures from 6 to 8. And the direction of the heat flow through the energy nose section is also easily seen from that In conclusion, the article is focused on an energy nose section in household refrigerator-freezer for practical proposes which is the energy saving in a household refrigerator-freezer. And the method suggested may be applied to any make or model to aid in the search for high efficient energy nose section of household side by side refrigerator-freezer as well as top mounted refrigerator-freezer, commercial refrigerator and so on.

Canonical Correlation of 3D Visual Fatigue between Subjective and Physiological Measures

  • Won, Myeung Ju;Park, Sang In;Whang, Mincheol
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.785-791
    • /
    • 2012
  • Objective: The aim of this study was to investigate the correlation between 3D visual fatigue and physiological measures by canonical correlation analysis enabling to categorical correlation. Background: Few studies have been conducted to investigate the physiological mechanism underlying the visual fatigue caused by processing 3D information which may make the cognitive mechanism overloaded. However, even the previous studies lack validation in terms of the correlation between physiological variables and the visual fatigue. Method: 9 Female and 6 male subjects with a mean age of $22.53{\pm}2.55$ voluntarily participated in this experiment. All participants were asked to report how they felt about their health sate at after viewing 3D. In addition, Low & Hybrid measurement test(Event Related Potential, Steady-state Visual Evoked Potential) and for evaluating cognitive fatigue before and after viewing 3D were performed. The physiological signal were measured with subjective fatigue evaluation before and after in watching the 3D content. For this study suggesting categorical correlation, all measures were categorized into three sets such as included Visual Fatigue set(response time, subjective evaluation), Autonomic Nervous System set(PPG frequency, PPG amplitude, HF/LF ratio), Central Nervous System set(ERP amplitude P4, O1, O2, ERP latency P4, O1, O2, SSVEP S/N ratio P4, O1, O2). Then the correlation of three variables sets, canonical correlation analysis was conducted. Results: The results showed a significant correlation between visual fatigue and physiological measures. However, different variables of visual fatigue were highly correlated to respective HF/LF ratio and to ERP latency(O2). Conclusion: Response time was highly correlated to ERP latency(O2) while the subjective evaluation was to HF/LF ratio. Application: This study may provide the most significant variables for the quantitative evaluation of visual fatigue using HF/LF ratio and ERP latency based human performance and subjective fatigue.

Mechanical and Thermal Analysis of Oxide Fuel Rods

  • Ilsoon Hwang;Lee, Byungho;Lee, Changkun
    • Nuclear Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.223-236
    • /
    • 1977
  • An integral computer code has been developed for a mechanical and thermal design and performance analysis of an oxide fuel rod in a pressurized water reactor. The code designated as FROD 1.0 takes into account the phenomena of radial power depression within the pellet, cracking, densification and swelling of the pellet, fission gas release, clad creep, pellet-clad contact, heat transfer to coolant and buildup of corrosion layers on the clad surface. The FROD 1.0 code yields two-dimensional temperature distributions, dimensional changes, stresses, and internal pressure of a fuel rod as a function of irradiation time within a reasonable computation time. The code may also be used for the analyses of oxide fuel rods in other thermal reactors. As an application of FROD 1.0 the behavior of fuel rod loaded in the first core of Go-ri Nuclear Power Plant Unit 1 is predicted for the two power histories corresponding to steady state operation and Codition II of the ANS Classification. The results are compared with the design criteria described in the Final Safety Analysis Report and a discrepancy between these two values is discussed herein.

  • PDF

An Action Unit co-occurrence constraint 3DCNN based Action Unit recognition approach

  • Jia, Xibin;Li, Weiting;Wang, Yuechen;Hong, SungChan;Su, Xing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.924-942
    • /
    • 2020
  • The facial expression is diverse and various among persons due to the impact of the psychology factor. Whilst the facial action is comparatively steady because of the fixedness of the anatomic structure. Therefore, to improve performance of the action unit recognition will facilitate the facial expression recognition and provide profound basis for the mental state analysis, etc. However, it still a challenge job and recognition accuracy rate is limited, because the muscle movements around the face are tiny and the facial actions are not obvious accordingly. Taking account of the moving of muscles impact each other when person express their emotion, we propose to make full use of co-occurrence relationship among action units (AUs) in this paper. Considering the dynamic characteristic of AUs as well, we adopt the 3D Convolutional Neural Network(3DCNN) as base framework and proposed to recognize multiple action units around brows, nose and mouth specially contributing in the emotion expression with putting their co-occurrence relationships as constrain. The experiments have been conducted on a typical public dataset CASME and its variant CASME2 dataset. The experiment results show that our proposed AU co-occurrence constraint 3DCNN based AU recognition approach outperforms current approaches and demonstrate the effectiveness of taking use of AUs relationship in AU recognition.

A Control of Inverted pendulum Using Genetic-Fuzzy Logic (유전자-퍼지 논리를 사용한 도립진자의 제어)

  • 이상훈;박세준;양태규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.977-984
    • /
    • 2001
  • In this paper, Genetic-Fuzzy Algorithm for Inverted Pendulum is presented. This Algorithms is combine Fuzzy logic with the Genetic Algorithm. The Fuzzy Logic Controller is only designed to two inputs and one output. After Fuzzy control rules are determined, Genetic Algorithm is applied to tune the membership functions of these rules. To measure of performance of the designed Genetic-Fuzzy controller, Computer simulation is applied to Inverted Pendulum system. In the simulation, In the case of f[0.3, 0.3] Fuzzy controller is measured that maximum undershoot is $-5.0 \times 10^{-2}[rad]$, maximum undershoot is $3.92\times10^{-2}[rad]$ individually however, Designed algorithm is zero. The Steady state time is approximated that Fuzzy controller is 2.12[sec] and designed algorithm is 1.32[sec]. The result of simulation, Resigned algorithm is showed it's efficient and effectiveness for Inverted Pendulum system.

  • PDF

A Study on the Use of Genetic Algorithm for Compensate a Intelligent Controller (지능제어기 보상을 위한 유전 알고리즘 이용에 관한 연구)

  • Shin, Wee-Jae;Moon, Jeong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.93-99
    • /
    • 2009
  • The fuzzy control, neural network and genetic algorithm(GA) are algorithms to make the intelligence of system more higher. In this paper, we optimized the fuzzy controller using a genetic algorithm for desire response. Also a compensated fuzzy controller has dual rules. One control rule used to decrease the overshoot and rise time occurring in transient response region and another fuzzy control rule use to decrease the steady state error and rapildy to converge at the convergence region. GA is necessary to optimal the exchange time of the two fuzzy control rule base. Fuzzy-GA controller have a process of reproduction, crossover and mutation and we experimented by hydraulic servo motor control system We could observe that compensated Fuzzy-GA controller have good control performance compare to the fuzzy control technique have two rule base table.

  • PDF

Small Turbojet Engine Test and Uncertainty Analysis (소형 터보제트 엔진 시험 및 불확도 분석)

  • Jun, Yong-Min;Yang, In-Young;Nam, Sam-Sik;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.118-126
    • /
    • 2002
  • The Altitude Engine Test Facility(AETF) was built at the Korea Aerospace Research Institute and has been being operated for the gas turbine engines in the class of 3,000 lbf thrust. To enhance the confidence level of AETF to the international level, a series of studies and facility modification have been conducted to improve the measurement uncertainty and reliability. In this paper, some part of the facility evaluation tests performed with a single spool turbojet engine are introduced. Tests were performed simulating the flight conditions as steady state, sea level for various flight speeds (i.e., Mn=0.3, 0.5, 0.7, 0.9). The obtained test results are compared with the predicted values of the engine DECK. The measurement uncertainties of airflow, net thrust, fuel flow and SFC showed 0.791~0.914%, 0.851~1.706%, 1.372~7.348% and 1.642~5.205%, respectively. Thus, from this research, the improvement methods of uncertainties on AETF has been confirmed.

Rotordynamic Performance Analysis and Operation Test of a Power Turbine for the Super critical CO2 Cycle Application (초임계 CO2 발전용 파워 터빈의 회전체 동역학 해석 및 구동 시험)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • This paper presents a rotordynamic analysis and the operation of a power turbine applied to a 250 kW super-critical $CO_2$ cycle. The power turbine consists of a turbine wheel and a shaft supported by two fluid film bearings. We use a tilting pad bearing for the power turbine owing to the high speed operation, and employ copper backing pads to improve the thermal management of the bearing. We conduct a rotordynamic analysis based on the design parameters of the power turbine. The dynamic coefficients of the tilting pad bearings were calculated based on the iso-thermal lubrication theory and turbine wheel was modeled as equivalent inertia. The predicted Cambell diagram showed that there are two critical speeds, namely the conical and bending critical speeds under the rated speed. However, the unbalance response prediction showed that vibration levels are controlled within 10 mm for all speed ranges owing to the high damping ratio of the modes. Additionally, the predicted logarithmic decrement indicates that there is no unstable mode. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation, and we monitor the shaft vibration and temperature of the lubricant during the test. In the steady state, we record a temperature rise of $40^{\circ}C$ between the inlet and outlet lubricant and the measured shaft vibration shows good agreement with the prediction.