• Title/Summary/Keyword: Steady State Flow

Search Result 1,019, Processing Time 0.038 seconds

Analysis of (K, r) Incomplete Inspection Policy for Minimizing Inspection Cost subject to a Target AOQ (출하 품질목표 조건하에 검사비용을 최소화하는(K, r) 부분검사정책의 분석)

  • Yang, Moon-Hee
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.87-96
    • /
    • 2011
  • In this paper, we address an optimization problem for minimizing the inspection and rework cost in an inspection-rework system, which forms a network of nodes including a K-stage inspection system, storage areas for items, a source inspection shop, and a re-inspection shop. We assume that (n, 0) acceptance sampling is performed in the source inspection shop and that only 100(1-r)% of items of rejected lots are re-inspected in the re-inspection shop. Since all the nodes are interrelated, in order to formulate our steady-state objective function, we make a steady-state network flow analysis between nodes, and derive both the steady-state amount of flows between nodes and the steady-state fraction defectives by solving a nonlinear balance equation. Finally we provide some fundamental properties and an enumeration procedure for determining the optimal values of (K, r) which both minimizes our objective function and attains a given target average outgoing quality.

Experimental Study of Natural Convectiion Heat Transfer from a Horizontal Ice Cylinder Immersed in Cold Pure Water (저온의 순수물속에 잠겨있는 수평 얼음원기둥에 의해 야기되는 자연대류 열전달의 실험적 해석)

  • 유갑종;추홍록;문종훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1019-1030
    • /
    • 1994
  • Natural convection heat transfer from a horizontal ice cylinder immersed in quiescent cold pure water was studied experimentally. The experiment was conducted for the ambient water temperatures ranging from $2.0^{\cric}C$ to $10.0^{\circ}C$. The flow fields around an ice cylinder and its melting shapes were visualized and local Nusselt numbers obtained. Especially, its attention was focused on the density maximum effects and stagnation point Nusselt number. From the visualized photographs of flow fields, three distinct flow patterns were observed with the ambient water temperature variation. The melting shapes of ice cylinder are various in shape with flow patterns. Steady state upflow was occured at the range of $2.0^{\circ}C \leq T_{\infty} \leq 4.6^{\circ}C$ and steady state downflow was occured at $T_{\infty} \geq 6.0^{\circ}C$. In the range of $4.7^{\circ}C < T_{\infty} < 6.0^{\circ}C$, three-dimensional unsteady state flow was observed. Especially, the melting shapes of ice cylinder have formed the several spiral flutes for the temperatures ranging from $5.5^{\circ}C$ to $5.8^{\circ}C$. For upflow regime, the maximum stagnation point Nusselt number exists at $T_{\infty} = 2.5^{\circ}C$ and as the ambient water temperature increases the Nusselt number decreases. At ambient water temperature of about $5.7^{\circ}C$, Nusselt number shows its minimum value.

Intake-Air Flow and Distribution Characteristics of the Gasoline Engine Intake-Manifold (가솔린엔진 흡기매니폴드의 흡기유량 및 분배특성)

  • Yeom, Kyoung-Min;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4718-4725
    • /
    • 2011
  • Intake-air flow and distribution characteristics of the 1600cc gasoline engine intake manifold have been studied using the computer simulation. Simulation has been conducted using both one-dimensional performance simulation and three-dimensional CFD software. Steady state flow simulation result of the intake manifold shows good distribution characteristics that the standard deviation of flow coefficients is below 1.0 percentage for both one- and three-dimensional simulation. Even though one-dimensional simulation result slightly overestimates compared with three-dimensional simulation result, both results show very good agreement in flow coefficient trend. Also, unsteady state simulation result shows consistent distribution characteristics with that of steady state. It is shown that unsteady state distribution characteristics might be able to be predicted through the steady state mass distribution result.

No Effect of Diltiazem on the Hepatic Clearance of Indocyanine Green in the Rats

  • Joo, Eun-Hee;Lee, Yong-Bok
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.411-417
    • /
    • 1998
  • In order to investigate the effect of the pretreatment with various doses of diltiazem (DTZ) on the pharmacokinetics of indocyanine green (ICG) at steady state, especially the hepatic blood clearance due to the change of hepatic blood flow, the following experiments were carried out with ICG, a hepatic function test marker, not metabolized in liver and only excreted in bile. The intravenous bolus injection ($3,780\mu\textrm{g}$/kg) and the constant-rate infusion ($10,100\mu\textrm{g}$/kg/hr) of ICG into the left femoral vein were made in order to check the steady-state plasma concentration ($C_{ss} of $10\mu\textrm{g}$/ml) of ICG at 20, 25 and 30 min. Following a 90-min washout period, the intravenous bolus injection (108, 430, 860 and $1,720\mu\textrm{g}$/kg) and the constant-rate infusion (108, 433, 866 and $1,730\mu\textrm{g}$/kg/hr) of DTZ into the right femoral vein were made and the achievement of the steady-state plasma levels ($C_{ss} of 50, 200, 400 and 800 ng/ml) of DTZ were conformed at 60, 70 and 80 min. During the steady state of DTZ, the intravenous bolus injection ($3,780\mu\textrm{g}$/kg) and the constant-rate infusion ($10,200\mu\textrm{g}$/kg/hr) of ICG into the left femoral vein were made and also the steady-state plasma concentration of ICG was checked at 20, 25 and 30 min. The plasma concentrations of DTZ and ICG were determined using a high performance liquid chromatographic technique. At the steady state, the hepatic blood clearance of ICG was obtained from the plasma concentration and blood-to-plasma concentration ratio ($R_B$) of ICG. The pretreatment with various doses of DTZ did not influence the plasma concentrations, $R_B$ and plasma free fraction ($f_p$) of ICG. So the hepatic blood clearance of ICG was independent of concentration of DTZ. The hepatic blood clearance of ICG could be affected by both hepatic bood flow and hepatic intrinsic clearance. But there was no change of the hepatic blood clearance of ICG between the control and the DTZ-pretreated rats in this study. So it may be suggested that DTZ does not influence hepatic blood flow.

  • PDF

Numerical Prediction of Flow and Heat Transfer on Lubricant Supplying and Scavenging Flow Path of An Aero-engine Lubrication System

  • Liu, Zhenxia;Huang, Shengqin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.22-24
    • /
    • 2008
  • This paper presents a numerical model of internal flows in a lubricant supplying and scavenging flow path of an aero-engine lubrication system. The numerical model was built in the General Analysis Software of Aero-engine Lubrication System, GASLS, developed by Northwestern Polytechnical University. The lubricant flow flux, pressure and temperature distribution at steady state were calculated. GASLS is a general purpose computer program employed a 1-D steady state network algorithm for analyzing flowrates, pressures and temperatures in a complex flow network. All kinds of aero-engine lubrication systems can be divided into finite correlative typical elements and nodes from which the calculation network be developed in GASLS. Special emphasis is on how to use combined elements which is a type of typical elements to replace some complex components like bearing bores, accessory gearboxes or heat exchangers. This method can reduce network complexity and improve calculation efficiency. Final computational results show good agreement with experimental data.

  • PDF

PREDICTION OF SEPARATION TRAJECTORY FOR TSTO LAUNCH VEHICLE USING DATABASE BASED ON STEADY STATE ANALYSIS (정상 해석 기반의 데이터베이스를 이용한 TST 비행체의 분리 궤도 예측)

  • Jo, J.H.;Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.86-92
    • /
    • 2014
  • In this paper, prediction of separation trajectory for Two-stage-To-Orbit space launch vehicle has been numerically simulated by using an aerodynamic database based on steady state analysis. Aerodynamic database were obtained for matrix of longitudinal and vertical positions. The steady flow simulations around the launch vehicle have been made by using a 3-D RANS flow solver based on unstructured meshes. For this purpose, a vertex-centered finite-volume method was adopted to discretize inviscid and viscous fluxes. Roe's finite difference splitting was utilized to discretize the inviscid fluxes, and the viscous fluxes were computed based on central differencing. To validate this flow solver, calculations were made for the wind-tunnel experiment model of the LGBB TSTO vehicle configuration on steady state conditions. Aerodynamic database was constructed by using flow simulations based on test matrix from the wind-tunnel experiment. ANN(Artificial Neural Network) was applied to construct interpolation function among aerodynamic variables. Separation trajectory for TSTO launch vehicle was predicted from 6-DOF equation of motion based on the interpolated function. The result of present separation trajectory calculation was compared with the trajectory using experimental database. The predicted results for the separation trajectory shows fair agreement with reference[4] solution.

Numerical Investigation of Ram Accelerator Flow Field in Expansion Tube (Expansion Tube 내의 램 가속기 유동장의 수치 연구)

  • 최정열;정인석;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.43-51
    • /
    • 1997
  • Steady and unsteady numerical simulations are conducted for the experiments performed to investigate the ram accelerator flow field by using the expansion tube facility in Stanford University. Navier-Stokes equations for chemically reacting flows are analyzed by fully implicit and time accurate numerical methods with Jachimowski's detailed chemistry model for hydrogen-air combustion involving 9 species and 19 reaction steps. Although the steady state assumption shows a good agreement with the experimental schlieren and OH PLIF images for the case of $2H_2$+$O_2$+$17N_2$, it fails in reproducing the combustion region behind the shock intersection point shown in the case of $2H_2$+$O_2$+$12N_2$, mixture. Therefore, an unsteady numerical simulation is conducted for this case and the result shows all the detailed flow stabilization process. The experimental result is revealed to be an instantaneous result during the flow stabilization process. The combustion behind the shock intersection point is the result of a normal detonation formed by the intersection of strong oblique shocks that exist at early stage of the stabilization process. At final stage, the combustion region behind the shock intersection point disappears and the steady state result is retained. The time required for stabilization of the reacting flow in the model ram accelerator is found to be very long in comparison with the experimental test time.

  • PDF

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.

Two-way fluid-structure interaction simulation for steady-state vibration of a slender rod using URANS and LES turbulence models

  • Nazari, Tooraj;Rabiee, Ataollah;Kazeminejad, Hossein
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.573-578
    • /
    • 2019
  • Anisotropic distribution of the turbulent kinetic energy and the near-field excitations are the main causes of the steady state Flow-Induced Vibration (FIV) which could lead to fretting wear damage in vertically arranged supported slender rods. In this article, a combined Computational Fluid Dynamics (CFD) and Computational Structural Mechanic (CSM) approach named two-way Fluid-Structure Interaction (FSI) is used to investigate the modal characteristics of a typical rod's vibration. Performance of an Unsteady Reynolds-Average Navier-Stokes (URANS) and Large Eddy Simulation (LES) turbulence models on asymmetric fluctuations of the flow field are investigated. Using the LES turbulence model, any large deformation damps into a weak oscillation which remains in the system. However, it is challenging to use LES in two-way FSI problems from fluid domain discretization point of view which is investigated in this article as the innovation. It is concluded that the near-wall meshes whiten the viscous sub-layer is of great importance to estimate the Root Mean Square (RMS) of FIV amplitude correctly as a significant fretting wear parameter otherwise it merely computes the frequency of FIV.

Development of LNG Terminal Flow Rate Data Reconciliation Method (LNG 터미널 유량 보정 방법 개발)

  • Lee, Sang-Ho;Lee, Chul-Jin;Lim, Young-Sub;Park, Chan-Saem;Han, Chong-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.21-26
    • /
    • 2010
  • Especially in Korea, LNG terminals commonly have huge scale because of the high demand of natural gas, and for the safe operation of terminal wide observation on temperature is necessary. That is the reason why the terminal has thermometer all over the facility but another information, flow rate, is insufficient. By the way, in pipeline, temperature difference is highly related with flow rate and with some simple assumptions, we can estimate flow rate. And through the steady state data reconciliation, the flow rate data become more reliable. In this research, we will study about flow rate data reconciliation method for LNG terminal and case study.