• Title/Summary/Keyword: Steady State Creep Rate

Search Result 57, Processing Time 0.027 seconds

Effect of Sb on the Creep Behavior of AZ31 Alloy (AZ31합금의 크립특성에 미치는 Sb의 영향)

  • Son, Geun-Yong;TiAn, Su-Gui;Kim, Gyeong-Hyeon
    • 연구논문집
    • /
    • s.33
    • /
    • pp.137-145
    • /
    • 2003
  • The effects of antimony addition on the microstructures and creep behavior of AZ31 magnesium alloy have been investigated. Constant load creep tests were carried out at temperatures ranging from $150^{\circ}C$ to $200^{\circ}C$, and an initial stress of 50MPa for AZ31 alloys containing antimony up to 0.84% by weight. Results show that small additions of antimony to AZ31 effectively decreased the creep extension and steady state creep rates. The steady state creep rate of AZ31 was reduced 2.5 times by the addition of 0.84% of antimony. The steady state creep rate of AZ31-0.84Sb alloy was controlled by dislocation climb in which the activation energy for creep was 128 kJ/mole. The microstructure of as-cast AZ31-0.84%Sb alloy showed the presence of $Mg_3Sb_2$ precipitates dispersed throughout the matrix. The main reason for the higher creep resistance in AZ31-Sb alloys is due to the presence $Mg_3Sb_2$, which effectively hindered the movement of dislocations during the elevated temperature creep.

  • PDF

High Temperature Creep Rupture Characteristics of Ni-Based Alloy718 Jointed by Friction Welding (마찰용접된 니켈기 초내열합금 Alloy718의 고온 크리프 파단 특성)

  • Kwon, Sang-Woo;Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.58-63
    • /
    • 2008
  • The short-term high temperature creep rupture behavior of Ni-based Alloy718 steels jointed by friction welding wasinvestigated at the elevated temperatures of 550 to $700^{\circ}C$ under constant stress conditions. The creep rupture characteristics such as creep stress, rupture time, steady state creep rate, and initial strain were evaluated. Creep stress has a quantitative correlation between creep rupture time and steady state creep rate. The stress exponents (n, m) of the experimental data at 550, 600, 650 and $700^{\circ}C$ were derived as 26.1, -22.4, 22.5, -18.5, 17.4, -14.3 and 6.9, -8.1, respectively. The stress exponents decreased with increasing creep temperature. The creep life prediction was derived by the Larson-Miller parameter (LMP) method and the result equation obtained is as follows: T(logtr+20)=-0.00148${\sigma}^2$-3.089${\sigma}$+23232. Finally, the results were compared with those of the base metal for Alloy718.

A Study on the Effect of Initial Strain on Cyclic Creep Properties of Steam Turbine Rotor Steel (화력 발전용 로터강의 초기 변형율이 CYCLIC 크리프 특성에 미치는 영향에 관한 연구)

  • 오세규;정순억;한상덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.78-86
    • /
    • 1992
  • The creep behaviors of 1%Cr-Mo-V and 12%Cr steam turbine rotor steels under static or cyclic load were examined at 600 and $700^{\circ}C$. The relationship between these two kinds of phenomena was studied and the experimental results were summarized as follows: 1) It is confirmed that the cyclic creep strain dependent on time is more available for creep, behavior analysis according to frequency change than that dependent on number of cycles, and the static creep, the special case of cyclic creep with stress ratio of 1 can be also more effectively analyzed by time-dependence. 2) The steady cyclic creep rate vs. the steady static creep rate, increases according to the increase of stress ratio, and this phenomena may occur on occasion of the decrease of the internal stress. 3) The initial strain affects on all the creep properties of the transient region, the steady state region and the rupture time in cyclic creep as well as static creep, and the quantitative relationships among them exist.

  • PDF

High Temperature Creep Rupture Characteristics of Ni-Based Alloy718 (니켈기 초내열합금 Alloy718의 고온 크리프 파단 특성)

  • Kwon, Sang-Woo;Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.52-57
    • /
    • 2008
  • The short-term high temperature creep rupture behavior of Ni-based Alloy718 steel was investigated at the elevated temperatures range of 550 to $700^{\circ}C$ under constant stress conditions. The creep rupture characteristics such as creep stress, rupture time, steady state creep rate, and initial strain were evaluated. Creep stress has a quantitative correlation between creep rupture tim and steady state creep rate. The stress exponents (n, m) of the experimental data at 550, 600, 650 and $700^{\circ}C$ were derived as 33.5, -24.9, 26.1, -21.2, 16.8, -12.8 and 10, -8.2, respectively. The stress exponent decreased with increasing creep temperature. The creep lift prediction was derived by the Larson-Miller parameter (LMP) method and the resultant equation was obtained as follows: T($logt_r$+20)=-0.00252 ${\sigma}^2$-1.377${\sigma}$+-22718.

Bending Creep and Creep Fracture of Sintered Alumina under High-Temperature (알루미나의 고온 굽힘크리프 및 크리프 파괴)

  • 김지환;권영삼;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.543-551
    • /
    • 1994
  • The creep behavior and creep fracture of sintered alumina at high temperature were investigated under four point flexural test. Steady-state creep behavior was observed at low bending stress and primary creep until fracture was observed at hish bending stress. The loading history of bending stress did not affect on steady-state creep rate. Intergranular fracture was dominant for fracture of alumina at room and high temperature. However, transgranular fracture was dominant on creep of alumina under high temperature by nucleation and growth of microcracks due to residual flaws or cavities in the material.

  • PDF

The steady-state creep rate and creep-rupture life of 2024 Al alloy at high temperature (2024 Al 合金의 高溫正常 크리이프 變形速度와 크리이프 破斷壽命에 관한 硏究)

  • 오세욱;박경동;박인석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.513-519
    • /
    • 1988
  • Constant load creep tests have been carried out over a range of stresses at high temperatures. The experimental equations of the steady-state creep rate and creep-rupture life were respectively found to be related to the normalized applied-stress and temperature as ln.epsilon.$_{s}$ =6.10 on.sigma./ $E_{T}$-12.81*10$^{3}$ 1/T+15.98 (h $r^{-1}$) ln $t_{R}$=-6.24ln.sigma./ $E_{T}$+15.08*10$^{3}$1/T-23.66 (hr) and the equation of creep-rupture life had a good agreement with the expression of the Minimum-Commitment Method (MCM). However, the relationship between the steady-state creep rate and the creep-rupture life, noted by Monkman and Grant, lnt/snb R/ = mln.epsilon.$_{S}$+b made a considerable deviation against the present creep-rupture data. It is believed that this problem is to be discussed and investigated continually.lly.lly..

Development of High Temperature Creep Properties Evaluation Method using Miniature Specimen (미소시험편을 이용한 고온 크리프 특성 평가법 개발)

  • Yu, Hyo-Sun;Baek, Seung-Se;Lee, Song-In;Ha, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.43-48
    • /
    • 2000
  • In this study, a small punch creep(SP-Creep) test using miniaturized specimen$(10{\times}10{\times}0.5mm)$ has been described for the development of the newly semi-destructive creep test method for high temperature structural components such as headers and tubes of boiler turbine casino and rotor and reactor vessel. The SP-Creep testing technique has been applied to 2.25Cr-1Mo(STBA24) steel used widely as boiler tube material and the creep test temperature are varied at $550^{\circ}C{\sim}600^{\circ}C$. The overall deformations of SP-Creep curves are definitely depended with applied load and creep test temperature and show the creep behaviors of three steps like conventional uniaxial creep curves. The steady state creep rate${\delta}_{ss}$ of SP-Creep curve for miniaturized specimen increases with increasing creep temperature, but the exponential value with creep loading is decreased. The activation energy$(Q_{spc})$ during SP-Creep deformation with various test temperatures shows 605.7kJ/mol that is g.eater than 467.4kJ/mol reported in uniaxial creep test. This may be caused by the difference of stress states during creep deformation In two creep test. But from the experimental results, e.g. SP-Creep curve behaviors, the steady state creep rate${\delta}_{ss}$ with creep temperature, and the exponential value(n) with creep loading, it can be summarized that the SP-Creep test may be a useful test method to evaluate the creep properties of the heat resisting material.

  • PDF

Thermal creep behavior of CZ cladding under biaxial stress state

  • Jin, Xin;Lin, Yuyu;Zhang, Libin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2901-2909
    • /
    • 2020
  • Thermal creep is a key property of zircaloy cladding. CZ developed by CGN is a new zircaloy used as PWR fuel cladding. This research is devoted to investigating the thermal creep behavior of CZ and build the thermal creep model of CZ. Twenty internal pressure creep tests were conducted, and the ranges of temperature and Tresca stress were 320-430 ℃ and 70-300 MPa, respectively. Real-time creep data were analyzed by separating primary creep and steady-state creep. Based on Soderberg model and creep test data, CZ thermal creep model is derived. As a whole, the mean value and the standard deviation of P/M of CZ saturated primary creep strain are very close to these from steady-state creep rate, however, the predictive effect of primary creep is less satisfactory. Four conditions, where there exists large deviation between predicted values and test data, are 320 ℃ and 300 MPa, 350 ℃ and 190 MPa, 380 ℃ and 160 MPa, 380 ℃ and 190 MPa, respectively. As primary creep was much smaller than steady-state creep in long-time operation, the thermal creep model built can be applied to predict the thermal creep behavior of CZ cladding.

Static Creep Characteristics of AI-10wt% TiCp Composites (Al-10wt% TiCp복합재료의 정적 크립특성)

  • Rhim, J.K.;Park, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.3
    • /
    • pp.159-165
    • /
    • 1993
  • Creep tests of the TiC particulate reinforced Al composite have been conducted in the temperature ranges from 200 to $500^{\circ}C$. The steady-state cree rate of the composite depended strongly on the temperature and ap' plied stress. The stress exponent for the steady state creep rate of the composites was approximately 17.5 and the activation anergy was calculated to be 390KJ/mol. The steady-state creep equation could be written as $\acute{\varepsilon}_{ss}$ $$(s^{-1})=1.5{\times}10^{-9}\;{\sigma}^{17.5}\exp(-390000/RT)$$. Fracture surface examination showed that the fracture mode of the particulate reinforced composite was ductile by plastic tearing of the aluminum matrix and TiC particle interfaces were offered as sites for crack.

  • PDF

Bending Creep and Creep Facture of Alumina under High-Temperature (알루미나의 고온 굽힘 크리프 및 크리프 파괴)

  • 김지환;권영삼;김기태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.167-174
    • /
    • 1994
  • The creep behavior and creep fracture of alumina at high temperature were investigated under four point flexural test. The steady-state creep behavior was observed at low bending stress and the primary creep until fracture was observed at high bending stress. The loading history of bending stress did not affect on the steady-stated creep rate. Intergranular fracture was dominant for fracture of alumina at room and high temperature. However, transgranular fracture was dominant on creep fracture of alumina under high temperature by nuclueation and growth of microcracks due to residual flaws or cavities in the material.

  • PDF