• Title/Summary/Keyword: Stator resistance estimation

Search Result 72, Processing Time 0.017 seconds

Adaptive Feedback Linearization Technique of PM Synchronous Motor With Specified Output Dynamic Performance (규정된 동특성을 갖는 영구 자석형 동기 전동기의 적응 궤환 선형화 제어 기법)

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Joo, Hyeong-Gil;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.334-336
    • /
    • 1995
  • An adaptive feedback linearization technique of a PM synchronous motor with specified output dynamic performance is proposed. The adaptive parameter estimation is achieved by a model reference adaptive technique where the stator resistance and flux linkage can be estimated with the current dynamic model and the state observer. Using these estimated parameters, the linearizing control inputs are calculated and a nonlinear coupled model of a PM synchronous motor is input-output linearized. The resultant model has the load torque disturbance. To get ti perfect decoupled model, the load torque is estimated. The adaptation laws are derived by the hyperstability theory and positivity concept. The robustness of the proposed control scheme will be proven through the computer simulations.

  • PDF

Analysis of influence of parameter error for extended EMF based sensorless control and flux based sensorless control of PM synchronous motor (영구자석 동기전동기의 확장 역기전력 기반 센서리스 제어와 자속기반 센서리스 제어의 파라미터 오차의 영향 분석)

  • Park, Wan-Seo;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.8-15
    • /
    • 2019
  • The PM synchronous motor drives with vector control have been applied to wide fields of industry applications due to its high efficiency. The rotor position information for vector control of a PM synchronous motor is detected from the rotor position sensors or rotor position estimators. The sensorless control based on the mathematical model of PM synchronous motor is generally used and it can be classified into back EMF -based sensorless control and magnet flux-based sensorless control. The rotor position estimating performance of the back EMF-based sensorless control is deteriorated at low speeds since the magnitude of back EMF is proportional to the motor speed. The magnitude of the magnet flux for estimating rotor position in the flux-based sensorless control is independent on the motor speed so that the estimating performance is excellent for wide speed ranges. However, the estimation performance of the model-based sensorless control may be influenced by the motor parameter variation since the rotor position estimator uses the mathematical model of the PM synchronous motor. In this paper, the rotor position estimation performance for the back EMF based- and flux-based sensorless controls is analyzed theoretically and is compared through the simulation and experiment when the motor parameters including stator resistance and inductance are varied.