• Title/Summary/Keyword: Stator resistance estimation

Search Result 72, Processing Time 0.038 seconds

Direct Torque Control of Induction Motors Using Closed Loop Flux Observer (폐루프 자속관측기를 이용한 유도전동기의 직접토크제어)

  • Geum, Won-Il;Ryu, Ji-Su;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1046-1049
    • /
    • 2000
  • A direct torque control(DTC) based sensorless speed control system which employs a new closed loop flux observer is proposed. The flux observer is an adaptive gain scheduling observer where motor speed is used as the scheduling variable. Adaptive nature comes from the fact that the estimates of stator resistance and speed are included as observer parameters. Simulation results show that the proposed flux observer gives better control and estimation results than conventional flux estimator specially in low speed region.

  • PDF

A Study on the Complex Accelerating Degradation and Condition Diagnosis of Traction Motor for Electric Railway (전기철도용 견인전동기의 복합가속열화 상태진단에 관한 연구)

  • 왕종배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.93-101
    • /
    • 2002
  • In this study, the stator form-winding sample coils based on silicone resin and polyimide were made for fault prediction and reliability estimation on the C-Class(200$\^{C}$ ) insulation system of traction motors. The complex accelerative degradation was periodically performed during 10 cycles, which was composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, the condition diagnosis test such as insulation resistance '||'&'||' polarization index, capacitance '||'&'||' dielectric loss and partial discharge properties were investigated in the temperature range of 20 ∼ 160$\^{C}$. Relationship among condition diagnosis tests was analyzed to find a dominative degradation factor and an insulation state at end-life point.

Inverter Output Voltage Synthesis Using Novel Dead Time Compensation (새로운 데드타임보상법을 이용한 인버터 출력전압의 합성)

  • 최종우;설승기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.4
    • /
    • pp.453-459
    • /
    • 1995
  • In this paper, a novel dead time compensation method is presented which produces inverter output voltages equal to reference voltages. An experimental result is also presented to demonstrate the validity of the proposed method. It shows that the compensation of the dead time is possible up to a sub-microsecond range. And the reference voltage can be used as a feedback value, which is essential for sensorless vector control and flux estimation. The method is based on space vector PWM strategy and can be carried out automatically by an inverter controller for initial set-up without any extra hardware.

  • PDF

Simple Estimation Scheme for Initial Rotor Position and Inductances for Effective MTPA-Operation in Wind-Power Systems using an IPMSM

  • Kang, Yi-Kyu;Jeong, Hea-Gwang;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.396-404
    • /
    • 2010
  • This paper presents simple schemes used to estimate the initial rotor position and the d- and q-axis inductances for effective Maximum Torque per Ampere (MTPA) operation in a wind-power system using an IPMSM (Interior Permanent Magnet Synchronous Machine). An IPMSM essentially requires an exact coordinate transformation and accurate inductance values to use a reluctance torque caused by the saliency characteristic. In the proposed high-frequency voltage testing method, there is no voltage drop caused by the resistance and the electromotive force. The initial rotor position and the inductance can be measured through an analysis of the stator current without turning the rotor. The experimental results are presented in order to illustrate the feasibility of the proposed method.

Adaptive Input-Output Linearization Technique of Interior Permanent Magnet Synchronous Motor with Specified Output Dynamic Performance

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Moon, Gun-Woo;Lee, Dae-Sik;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.58-66
    • /
    • 1996
  • An adaptive input-output linearization technique of an interior permanent magnet synchronous motor with a specified output dynamic performance is proposed. The adaptive parameter estimation is achieved by a model reference adaptive technique where the stator resistance and the magnitude of flux linkage can be estimated with the current dynamic model and state observer. Using these estimated parameters, the linearizing control inputs are calculated. With these control inputs, the input-output linearization is performed and the load torque is estimated. The adaptation laws are derived by the Popov's hyperstability theory and the positivity concept. The robustness and the output dynamic performance of the proposed control scheme are verified through the computer simulations.

  • PDF

Parameter estimation of permanent magnet synchronous motor and adaptive control by MRAS (MRAS를 이용한 매입형 영구자석 동기전동기의 상수 추정 및 적응제어기법)

  • Yang, Hyunsuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.697-702
    • /
    • 2016
  • To control permanent magnet synchronous motors smoothly, it is important to know the exact parameter values of the stator resistance, various inductances, and the flux linkage of the permanent magnet. In practice, these parameters vary due to a variable operating point, temperature change, or a fault. This paper proposes a MRAS (Model Reference Adaptive System) based parameter estimator and adaptive control scheme. Owing to the non-linearity of the system equation with respect to these parameters, although many schemes proposed previously assumed that some parameters are known, all the parameters were assumed to be unknown. The simulation results revealed the effectiveness of the proposed algorithm.

Parameter estimation and adaptive control of permanent magnet synchronous motors (매입형 영구자석 동기전동기 상수의 추정 및 적응제어기법)

  • Yang, Hyunsuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1044-1050
    • /
    • 2014
  • Maximum torque per ampere vector controller is widely used to control permanent magnet synchronous motors. For the controller to work properly, it is important to know the exact values of motor parameters such as a stator resistance, inductances, and the flux linkage of the permanent magnet. In this paper, an adaptive control algorithm is proposed to estimate these parameters using MRAS(Model Reference Adaptive System). Simulation results demonstrate the effectiveness of the proposed algorithm.

Estimation of Motor Deterioration using Pulse Signal and Insulation Resistance Measurement Algorithm (펄스 신호 및 절연저항 측정 알고리즘을 이용한 전동기 열화 추정)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.111-116
    • /
    • 2022
  • The causes of motor burnout include overload, phase loss, restraint, interlayer short circuit, winding ground fault, instantaneous overvoltage, and the rotor contacting the stator, leading to insulation breakdown, leading to breakdown or electrical accidents. Therefore, equipment failure causes not only loss due to cost required for equipment maintenance/repair, but also huge economic loss due to productivity decrease due to process stop because the process itself including the motor is stopped. The current level of technology for diagnosing motor failures uses vibration, heat, and power analysis methods, but there is a limit to analyzing the problems only after a considerable amount of time has passed according to the failure. Therefore, in this paper, a device and algorithm for measuring insulation resistance using DC AMP signal was applied to an industrial motor to solve this problem. And by following the insulation resistance state value, we propose a diagnosis of deterioration and failure of the motor that cannot be solved by the existing method.

PMSM Sensorless Speed Control Using a High Speed Sliding Mode Observer (고속 슬라이딩모드 관측기를 이용한 PMSM 센서리스 속도제어)

  • Son, Ju-Beom;Kim, Hong-Ryel;Seo, Young-Soo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.256-263
    • /
    • 2010
  • The paper proposes a sensorless speed control strategy for a PMSM (Permanent Magnet Synchronous Motor) based on a new SMO (Sliding Mode Observer), which substitutes a signum function with a sigmoid function. To apply robust sensorless control of PMSM against parameter fluctuations and disturbance, the high speed SMO is proposed, which estimates the rotor position and angular velocity from the back EMF. The low-pass filter and additional position compensation of the rotor are used to reduce the chattering problem commonly found in sliding mode observer with signum function, which becomes possible by applying the sigmoid function with the control of a switching function. Also the proposed sliding mode observer with the sigmoid function has better efficiency than the conventional sliding mode observer since it adjusts the observer gain by variable boundary layer and estimates the stator resistance. The stability of the proposed sliding mode observer is verified by the Lyapunov second method in determining the observer gain. The validity of the proposed high speed PMSM sensorless velocity control has been demonstrated by real experiments.

A Study on the Integrated Simulation and Condition Monitoring Scheme for a PMSG-Based Variable Speed Grid-Connected Wind Turbine System under Fault Conditions (PMSG 적용 가변속 계통연계형 풍력발전 시스템의 통합 시뮬레이션 및 스위치 개방고장 진단기법 연구)

  • Kim, Kyeong-Hwa;Song, Hwa-Chang;Choi, Byoung-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.65-78
    • /
    • 2013
  • To analyze influences under open fault conditions in switching devices, an integrated simulation and condition monitoring scheme for a permanent magnet synchronous generator (PMSG) based variable speed grid-connected wind turbine system are presented. Among various faults in power electronics components, the open fault in switching devices may arise when the switches are destructed by an accidental over current, or a fuse for short protection is blown out. Under such a faulty condition, the grid-side inverter as well as the generator-side converter does not operate normally, producing an increase of current harmonics, and a reduction in output and efficiency. As an effective way for a condition monitoring of generation system by online basis without requiring any diagnostic apparatus, the estimation schemes for generated voltage, flux linkage, and stator resistance are proposed and the validity of the proposed scheme is proved through comparative simulations.