• Title/Summary/Keyword: Stator flux

Search Result 604, Processing Time 0.031 seconds

Comparison of Transverse Flux Rotary Machines with Different Stator Core Topologies

  • Lee, Jiyoung;Chung, Shiuk;Koo, Daehyun;Han, Choongkyu
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.146-150
    • /
    • 2014
  • The objective of this paper is to provide a comparison between two transverse flux rotary machines (TFRM) with different topologies of stator cores. Depending on how to make stator core with laminated steel sheets, the one topology is 'perpendicular stacking core' and the other is 'separated core'. Both of the two cores have been designed considering 3-dimensional (3-D) magnetic flux path with the same output power conditions, but the core losses are quite different and it causes different magnetic and thermal characteristics. For comparison of these two topologies of stator cores, therefore, core losses have been calculated and used as a heat source in no-load conditions, and the thermal stress has been also calculated. 3-D finite element method has been used for the magnetic field, thermal, and stress analysis to consider the 3-D flux path of the TFRM. After comparing the analysis results of the two topologies, experimental results are also presented and discussed.

Speed Sensorless Vector Control for High Performance of Induction Motor (유도전동기의 고성능제어를 위한 속도센서리스 벡터제어)

  • Dong Hwa Chung
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.37-46
    • /
    • 1993
  • Recently, the elimination of speed sensors has been one of the important requirement in vector control systems, because the speed sensor spoil the ruggedness and simplicity of induction motor. This paper proposes sensorless vector control for high performance of induction motor. The proposed vector control scheme is based on a rotor flux and speed which are calculated from the stator voltage and currents with improved flux estimator. The characteristics of vector control employing stator voltage and current generally deteriorate as the speed gets lower acause the calculated rotor flux depends on the stator resistance and it is difficult to calculate rotor flux at low speed of standstill. This new control system is robust with respect to variations of the stator resistance and it makes possible to calculated rotor flux at low speed of standstill. These feature are verified by the simulation results.

  • PDF

A Method for Indentifying Broken Rotor Bar and Stator Winding Fault in a Low-voltage Squirrel-cage Induction Motor Using Radial Flux Sensor

  • Youn, Young-Woo;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.666-670
    • /
    • 2011
  • In this paper, a method for detecting broken rotor bar and stator winding fault in a low voltage squirrel-case induction motor using an air-gap flux variation analysis is proposed to develop a simple and low cost diagnosis technique. To measure the leakage flux in radial direction, a radial flux sensor is designed as a search coil and installed between stator slots. The proposed method is able to identify two kinds of motor faults by calculating load condition of motors and monitoring abnormal signals those are related with motor faults. Experimental results obtained on 7.5kW three-phase squirrel-cage induction motors are discussed to verify the performance of the proposed method.

풍력발전을 위한 이중여자 유도기의 센서리스 제어

  • 김용현;김일환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.451-458
    • /
    • 2000
  • In wind power generating system connected in power grid, the value of stator flux has almost constant because the stator side of doubly fed induction machine(DFIM) is connected to power grid. Using the stator and rotor current, it is possible to estimate the slip angle and rotor speed. A stator flux orientation scheme and rotor slip estimator are employed to achieve control of generating power in stator side. To verify the theoretical analysis, a 5-hp DFIM prototype system and PWM power converter are built. Results of computer simulation and experiment are presented to support the discussion.

  • PDF

The Direct Torque Control of Induction Motor for Dynamic Characteristics Improvement in a Low Speed Range (저속영역에서의 동특성 개선을 위한 유도전동기의 직접토크제어)

  • 조금배;최연옥;백형래
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.601-609
    • /
    • 2000
  • Direct torque control(DTC) of AC motor has the fast torque and flux dynamic responses even though it has very simple scheme to implement. However, DTC do not show good performance at low speed range with conventional open loop stator flux observer when stator resistance varied. Therefore, authors propose a new nonlinear stator flux observer in order to estimate the stator flux of induction motor at low speed and show its simulation results.

  • PDF

An Improved Model Predictive Direct Torque Control for Induction Machine Drives

  • Song, Wenxiang;Le, Shengkang;Wu, Xiaoxin;Ruan, Yi
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.674-685
    • /
    • 2017
  • The conventional model predictive direct torque control (MPDTC) method uses all of the voltage vectors available from a two level voltage source inverter for the prediction of the stator flux and stator current, which leads to a heavy computational burden. This paper proposes an improved model predictive direct torque control method. The stator flux predictive controller is obtained from an analysis of the relationship between the stator flux and the torque, which can be used to calculate the desired voltage vector based on the stator flux and torque reference. Then this method only needs to evaluate three voltage vectors in the sector of the desired voltage vector. As a result, the computational burden of the conventional MPDTC is effectively reduced. The time delay introduced by the computational time causes the stator current to oscillate around its reference. It also increases the current and torque ripples. To address this problem, a delay compensation method is adopted in this paper. Furthermore, the switching frequency of the inverter is significantly reduced by introducing the constraint of the power semiconductor switching number to the cost function of the MPDTC. Both simulation and experimental results are presented to verify the validity and feasibility of the proposed method.

Direct Vector Control of Induction Motor Using the Third Harmonic Component of the Stator Voltage (고정자 전압의 제3고조파 성분을 이용한 유도전동기의 직접 벡터제어)

  • Jung, Jong-Jin;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.97-99
    • /
    • 1993
  • A direct vector control for induction machine based on determination of the spatial position of the airgap flux from the third harmonic component of the stator phase voltage is presented in this Paper. The relationship between the airgap fundamental flux component and the third harmonic flux component obtained from the stator third harmonic voltage is presented at the end of this paper.

  • PDF

Stator Flux Oriented Sensorless Vector Control with Phase/Gain Compensated LPF for Induction Motor (유도전동기를 위한 위상/이득 보상 LPF를 가지는 고정자 자속 기준 센서리스 벡터 제어)

  • Park Seung-Yub;Kim Sam-Young
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.4
    • /
    • pp.201-207
    • /
    • 2005
  • This paper has investigated the sensorless vector control method of induction motor based on the stator flux oriented voltage equation and the digital low pass filter (LPF) with compensator of phase/gain. The Proposed vector control method is easy to decide the stator reference voltages and control of motor, since it is based on stator flux vector But this method has sensitive structure to excessive sensor noise and PWM pulsating components of stator currents because the measured stator currents are directly used to compensate the internal resistive voltage drop at the determination of stator reference voltages. To eliminate the noise sensitive of proposed vector drive, this paper propose the digital LPF with compensator of phase/gain base on orthogonal property of stator current vector in stationary $\alpha$, $\beta$ reference frame. The proposed methods have been simulated and implemented on a sensorless vector drive for 750W three-phase induction motor. The simulation and experimental results demonstrate effectiveness of the proposed methods.

A MRAS Speed and Stator Flux Linkage Estimator for Permanent Magnet Synchronous Motor drives with parameter identification (파라미터 산정과 영구자석 동기전동기 제어를 위한 MRAS Speed 와 Stator Flux Linkage 추정량)

  • Lin, Hai;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.830-831
    • /
    • 2011
  • The paper makes an investigation on a speed and stator flux linkage estimator for permanent magnet synchronous motor (PMSM) sensorless drives using the technology of model reference adaptive system (MRAS). The designed estimator including two models and two adaptive estimating laws is proved to be stable by the Popov hyper-stability theory. The speed, the stator flux linkage and the resistance are estimated accurately by the proposed estimator while overcoming the shortcoming of the traditional one. The experiment results demonstrate its effectiveness.

  • PDF

A Novel Design Technique to Improve the Performance of Flux-Reversal Machine (성능 개선을 위한 자속 역전식 기기의 설계 기법)

  • Kim Tae Heoung;Lee Ju;Lee Sang-Don
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.700-708
    • /
    • 2004
  • Flux-reversal machine (FRM) is a new doubly-salient stator-permanent magnet (PM) machine with flux linkage reversal in the stator concentrated windings. It can operate in both motoring and generating modes. In this paper, a novel design technique to improve the performance of FRM is proposed. Proposed techniques have a new stator winding and a magnet arrangement method. The stator and rotor shape with a concave type and a flux barrier are also proposed. According to the experimental results, it is shown that the proposed FRM have an improved performance.